Exam 1 Real Analysis 1 10/4/2002 '
Each problem is worth 10 points. Show adequate justification for full credit. Don’t panic.

1. Among th@culty at a certain small liberal arts college, it is discovered that 57 are idiots,
78 are ﬁ-igindless, and 42 are mean people. Further examination reveals that 31 are both idiots
and friendless, 13 are both idiots and mean, and 28 are both mean and friendless. If the only

faculty member who is a friendless, mean, idiot is named Jon, then how many faculty members
are neither friendless, mean, nor idiots?
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2. Give an example of an odd function (you need prove that it’s odd, so long as it is).
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3. State the definition of convergence of a sequence {a,}.
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4, State the definition of an increasing sequence.
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5 Prove that if n is a natural number for which n? is odd, then n is also odd.
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6. Prove that the sum of the first n odd natural numbers is n’.
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7. Prove from the definition that {-\—}_——} converges to 0. ﬂ
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8. Prove or give a counterexample: If {a,} is a sequence which diverges to += and {b, } is
another sequence, then {a b} diverges to +oo.
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9. Using some or all of the axioms:

(Al) (Closure)atb,a'b € R for any a, b € R. Also, ifa, b, ¢, d € R with a=b and ¢=d, then
a+c=b+d and ac=b"d.

(A2) (Commutative) atb =b+a and a'b =b-a forany a, b € R.

(A3) (Associative) (at+b)+c = a+(btc) and (a'b)-c = a’(b-c) for any a, b,c, € R.

(A4) (Additive identity) There exists a zero element in R, denoted by 0, such that a+0=a for
any a € R.

(A5) (Additive inverse) For cach a € R, there exists an element -a in R, such that a + (-a) = 0.

(A6) (Multiplicative identity) There exists an element in R, which we denote by 1, such that
a'l =aforanya€ R,

(A7) (Multiplicative inverse) For cach a € R with a # 0, there exists an element in R denoted

by - ora’, such that aa'=1.

(A8) (Distributive) a*(b+c) = (a'b)+(ac) for any a, b, c € R.

(A9) (Trichotomy) For a, b € R, exactly one of the following is true: a=b, a < b,ora>b.
(A10) (Transitive) Fora,b € R.ifa<bandb<c,thena<c.

(Al1) Fora,b,c€ R,ifa<b,thena+c<b-+c.

(A12) Forab,c€R,ifa <b and ¢ > 0, then ac < be.

Prove that if a, b € R, then a <b if and only if -a > -b. Be explicit about which axioms you use.
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10. Prove that if {a,} converges to 0, then {(a,)’} converges to 0.
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Extra Credit (this problem can replace your lowest-scoring other problem): Prove that \/E is
irrational.
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