1. Prove Theorem 4.1.7(a).

Suppose that D is the domain of f.

(a) If f is continuous at a, then there exists $\delta > 0$ such that f is bounded on the set $(a-\delta, a+\delta) \cap D$.

Well, let $\varepsilon > 0$ be given. Then there exists $\delta > 0$ such that $|x-a| < \delta \implies |f(x) - f(a)| < \varepsilon$.

by Cor. 1.8.(b); $|f(x)| - |f(a)| \leq |f(x) - f(a)| < \varepsilon$

by transitive: $|f(x)| - |f(a)| < \varepsilon$

add $|f(a)|$: $|f(x)| < \varepsilon + |f(a)|$

Letting $M = \varepsilon + |f(a)|$ gives:

$|f(x)| < M$ for all $x \in (a-\delta, a+\delta) \cap D$.

Therefore $f(x)$ is bounded on the set $(a-\delta, a+\delta) \cap D$, as desired. □

Well done.
2) Th. 4.1.7 e

If \(D = (a, b) \), \(f \) is continuous at \(c \in D \), and \(f(c) > 0 \),
then there exists a neighborhood \(N_\varepsilon \) of \(c \) such that \(f(x) > 0 \)
for all \(x \in N_\varepsilon \cap (a, b) \).

Proof: Since \(f \) is continuous at \(c \), we know that for any \(\varepsilon > 0 \),
there exists a \(S > 0 \) such that \(|f(x) - f(c)| < \varepsilon \) for all \(|x - c| < S \)
and \(x \in (a, b) \). Since this is true for any \(\varepsilon > 0 \), and since \(f(c) > 0 \), we'll choose
\(\varepsilon \) such that \(0 < \varepsilon < f(c) \). Now we have \(|f(x) - f(c)| < \varepsilon \),
which means by Theorem 1.8.5 that \(-\varepsilon < f(x) - f(c) < \varepsilon \), or
\(f(c) - \varepsilon < f(x) < f(c) + \varepsilon \). But since \(\varepsilon < f(c) \), \(f(c) - \varepsilon > 0 \).
Thus \(f(x) > f(c) - \varepsilon \) implies \(f(x) > 0 \) by transitivity.

All these statements hold for \(|x - c| < S \) and \(x \in (a, b) \), so
\(-S < x - c < S \), or \(c - S < x < c + S \). So for any \(0 < \varepsilon < f(c) \),
there exists a neighborhood \((c - S, c + S) \) such that \(f(x) > 0 \)
for \(x \in (c - S, c + S) \cap (a, b) \).

\(\square \)

Great Job!