You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Use a $7^{\text {th }}$ degree MacLaurin Polynomial to approximate $\ln 1.7$ to 8 decimal places.
2. Use a $6^{\text {th }}$ degree MacLaurin Polynomial to approximate $\int_{0}^{0.1} \sin \left(x^{2}\right) d x$ to 8 decimal places. Compare to Mathematica's value.
3. Use a $6^{\text {th }}$ degree MacLaurin Polynomial to approximate $\int_{0}^{0.2} \frac{\sin x}{x} d x$ to 8 decimal places. Compare to Mathematica's value.
4. Approximate $\sqrt{3}$ to 8 decimal places using an appropriate series. Compare to the true value.
