Exam 1a Calc 3 9/30/2008

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. State the formal definition of the partial derivative of a function $\mathrm{f}(x, y)$ with respect to x.
2. Find an equation for the plane tangent to $z=3 x^{2}+2 y^{2}-2 y-1$ at the point $(3,5,66)$.
3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y-y^{2}}{x^{2}+y^{2}}$ does not exist.
4. Write the appropriate version of the chain rule for $\frac{\partial u}{\partial t}$ in the case where $u=f(x, y, z), x=x(s, t)$, $y=y(s, t)$, and $z=z(s, t)$. Make clear distinction between derivatives and partial derivatives.
5. Find the maximum and minimum values (and distinguish clearly which are which) of the function $f(x, y)=4 x+6 y$ subject to the constraint $x^{2}+y^{2}=16$.
6. Show that for any vectors \vec{a} and \vec{b}, the vector $\vec{a} \times \vec{b}$ is perpendicular to \vec{b}.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Man, this Calc 3 stuff is killing me. It's like, geez, everything I had to memorize before in math is all a lie now, you know? Like on our first test, there was this question about what the graph of $y=$ x^{2} looked like, right? And obviously I memorized that before, so I picked the parabola graph, which was right there answer b in the multiple choices, right? But they said that one was wrong because of the z, which is crazy 'cause there's not even a z in the equation."

Explain clearly to Biff why the graph of $y=x^{2}$ might not look like it used to.
8. Find and classify all critical points of the function $f(x, y)=3 x y-x^{2} y-x y^{2}$.
9. Show that the equation of the tangent plane to the hyperboloid $x^{2} / a^{2}+y^{2} / b^{2}-z^{2} / c^{2}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as $\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}-\frac{z z_{0}}{c^{2}}=1$.
10. Jon has discovered an abandoned silver mine on family property in Arizona, and plans to resume mining operations as soon as possible (with the revenues going to a fund for enormous prize scholarships for the students earning the highest scores in Calculus 3 classes). However, it will first be necessary to construct a new access road. The mine is located at the point $(4000,2000,4000)$ on Ideal Mountain, which has equation $z=\sqrt{6000^{2}-x^{2}-y^{2}}$. The road can have at most a 5% grade, meaning that as a truck moves along the road leaving the mine it cannot descend more that 5 feet for every 100 feet of horizontal travel. In which direction should the road leave the mine to descend as rapidly as feasible?

Extra Credit (5 points possible):
Give a parametric representation for the curve of intersection of the surfaces $z=x^{2}+y^{2} / 4$ and $z=x^{2} / 4$ $+y^{2}$.

