Fake Quiz $2 \quad$ Calculus $3 \quad 9 / 26 / 2008$

Each problem is worth 0 points. In the event of an actual quiz, you would have received warning

1. Three alleles (alternative versions of a gene) A, B, and O determine the four blood types A (AA or AO), $\mathrm{B}(\mathrm{BB}$ or BO$), \mathrm{O}(\mathrm{OO})$ and AB . The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$
P=2 p q+2 p r+2 r q
$$

where p, q, and r are the proportions of A, B, and O in the population. Use the fact that

$$
p+q+r=1
$$

to show that P is at most $2 / 3$. [From Stuart $5^{\text {th }}, \# 52$ in $\S 14.7$]
2. Some items are sold at a discount to senior citizens or children. The reason is that these groups are more sensitive to price, so a discount has greater impact on their purchasing decisions. The seller faces an optimization problem: How large a discount to offer in order to maximize profits? Suppose a theater can sell q_{c} child tickets and q_{a} adult tickets at prices p_{c} and p_{a}, according to the demand functions:

$$
q_{c}=r p_{c}^{-4} \quad \text { and } \quad q_{a}=s p_{a}^{-2}
$$

and has operating costs proportional to the total number of tickets sold. What should be the relative price of children's and adults' tickets? [From Hughes-Hallett et al. $3^{\text {rd }}$, sic, \#22 in §15.2]
3. The strength of a radio signal is basically inversely proportional to the cube root of distance from the transmitter. Suppose three transmitters of equal strength are located at the origin, the point $(10,0)$, and the point $(0,5)$. If reception is proportional to the sum of the three signals received, where will reception be best? [Mea culpa]

