Fake Quiz $4 \quad$ Calculus $3 \quad$ 11/7/2008

Each problem is worth 0 points. In the event of an actual quiz, you would have received warning.
Let $\mathbf{F}(x, y)=\langle x, y\rangle$.

1. Evaluate $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$, where C_{1} is a path beginning at the origin, following a line segment to $(5,0)$, then a counterclockwise arc of a circle centered at the origin with radius 5 to $(0,5)$, then returning to the origin along a line segment.
2. Evaluate $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$, where C_{2} is a path beginning at the origin, following a line segment to $(0,2)$, then a counterclockwise arc of a circle centered at the origin with radius 2 to $(-2,0)$, then returning to the origin along a line segment.
3. Evaluate $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}$, where C_{1} is a path beginning at the origin, following a line segment to $(3,0)$, then a line segment from there to $(3,3)$, followed by a line segment from there to $(0,3)$, and finally a line segment from there to the origin.
4. Evaluate $\int_{C_{4}} \mathbf{F} \cdot d \mathbf{r}$, where C_{4} is a path beginning at $(-1,1)$, following a line segment to $(-1,-1)$, then a line segment from there to $(1,-1)$, followed by a line segment from there to $(1,1)$, and finally a line segment from there to $(-1,1)$.

Let $\mathbf{G}(x, y)=-y \mathbf{i}+x \mathbf{j}$.
5. Evaluate $\int_{C_{1}} \mathbf{G} \cdot d \mathbf{r}$, where C_{1} is a path beginning at the origin, following a line segment to $(5,0)$, then a counterclockwise arc of a circle centered at the origin with radius 5 to $(0,5)$, then returning to the origin along a line segment.
6. Evaluate $\int_{C_{2}} \mathbf{G} \cdot d \mathbf{r}$, where C_{2} is a path beginning at the origin, following a line segment to $(0,2)$, then a counterclockwise arc of a circle centered at the origin with radius 2 to $(-2,0)$, then returning to the origin along a line segment.
7. Evaluate $\int_{C_{3}} \mathbf{G} \cdot d \mathbf{r}$, where C_{1} is a path beginning at the origin, following a line segment to (3,0), then a line segment from there to $(3,3)$, followed by a line segment from there to $(0,3)$, and finally a line segment from there to the origin.
8. Evaluate $\int_{C_{4}} \mathbf{G} \cdot d \mathbf{r}$, where C_{4} is a path beginning at $(-1,1)$, following a line segment to $(-1,-1)$, then a line segment from there to $(1,-1)$, followed by a line segment from there to $(1,1)$, and finally a line segment from there to $(-1,1)$.

