(Easier) Practice Quiz 4 Calc 3 11/4/2008

1. Give parametric equations $\mathrm{x}(t), \mathrm{y}(t), \mathrm{z}(t)$ and bounds for t that produce a path from $(3,0,1)$ to (5, 7, 1).

$$
\begin{aligned}
& \mathrm{x}(t)=3+2 t \\
& \mathrm{y}(t)=7 t \\
& \mathrm{z}(t)=1 \\
& \text { for } 0 \leq t \leq 1
\end{aligned}
$$

2. Give parametric equations $\mathrm{x}(t), \mathrm{y}(t), \mathrm{z}(t)$ and bounds for t that produce a unit circle centered at the origin in the plane $z=0$ beginning at $(1,0,0)$.

$$
\begin{aligned}
& \mathrm{x}(t)=\cos t \\
& \mathrm{y}(t)=\sin t \\
& \mathrm{z}(t)=0
\end{aligned}
$$

for $0 \leq t \leq 2 \pi$

(Harder) Practice Quiz 3 Calc 3 11/4/2008

1. Give parametric equations $\mathrm{x}(t), \mathrm{y}(t), \mathrm{z}(t)$, and bounds for t that produce a path from $(-2,7,1)$ to (a, b, c).

$$
\begin{aligned}
& \mathrm{x}(t)=-2+(a+2) t \\
& \mathrm{y}(t)=7+(b-7) t \\
& \mathrm{z}(t)=1+(c-1) t \\
& \text { for } 0 \leq t \leq 1
\end{aligned}
$$

2. Give parametric equations $\mathrm{x}(t), \mathrm{y}(t), \mathrm{z}(t)$ and bounds for t that produce an arc of a circle centered at $(0,0,3)$ in the plane $z=3$ of radius a beginning at $(0, a, 3)$ and continuing counterclockwise through n quadrants.
$\mathrm{x}(t)=a \cos t$
$\mathrm{y}(t)=a \sin t$
$z(t)=3$
for $\pi / 2 \leq t \leq \pi / 2+n \pi / 2$
