Calculus 3 MTWF 11:00-10:50am/1:00-1:50pm Fall 2008 Stuart 308

Instructor:	Jonathan White
E-Mail:	JWhite @Coe.Edu
Web Page:	public.coe.edu/~jwhite
Office:	Stuart 316
Office Hours:	MTWF 2:00-2:50pm and by appointment
Office Phone:	$399-8280$
Home Phone:	$841-5111$ (between 7am and 10pm)
Text:	Calculus, Early Transcendentals, $5^{\text {h }}$ Edition, James Stewart
Problem Sets	There will be several problem sets and quizzes during the semester, as well as online \& Quizzes: WeBWorK assignments. Together these will be worth 200 points
Math Culture	Math Culture Points will constitute 50 points. These will be earned through participation in various activities outside of class, as detailed elsewhere.
Exams:	There will be three in-class exams administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points each.
Grading:	The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points.
Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale. Current grade information will be available online through Moodle at all times.	
Makeups:	For the sake of fairness to those who follow the schedule, makeups for exams will be allowed only under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted will generally be subject to a penalty of 20\% of the possible points for each day past due.

Any student entering this class should already be aware that calculus is the mathematics of changing quantities. The major development in Calculus 3 is that we widen our scope to functions of more than one variable. This simultaneously adds tremendously to the breadth of phenomena that can be addressed, and also introduces complications that have no analog in the essentially two-dimensional world of Calculus 1 and 2.

Calculus 3 is the culmination of the calculus sequence, and this presents challenges in at least three respects. First, ability to visualize and use spatial intuition is taken to a new level. Second, computations are in some cases correspondingly bigger and longer. Third, abstract theoretical considerations become a more central element, sometimes overshadowing mere computations as the most important material. In response to all three of these considerations the judicious use of technology can be a valuable aid. Sophisticated calculators such as the TI-89 and computer software packages such as Mathematica, when used properly, can lead to easier and deeper understanding of the course material. However the use of this technology itself involves a significant learning experience, and often significant frustrations. We will attempt to use Mathematica in this course when the benefits are the greatest, and assist you in its use enough to keep the frustrations to a minimum.

Students must pass an online integration gateway exam by Friday of the fourth week of class or lose 5\% of the total points possible for each additional week or part of a week before passing.

If at some point these challenges or frustrations get too bad, I strongly encourage you to see me for extra explanation -- don't wait until you're overwhelmed. I'm here to help.

Calculus 3 MTWF 11:00-10:50am/1:00-1:50pm Fall 2008 Stuart 308

Tentative Schedule

Monday, August $25^{\text {th }}$ §12.1-2 \mathbb{R}^{3} and Vectors	Tuesday, August $26^{\text {th }}$ §12.3 Dot Products	Wednesday, August $27^{\text {th }}$ §12.4 Cross Products	Friday, August $29^{\text {st }}$ §12.5 Lines \& Planes
Monday, September $1^{\text {st }}$ No Class - Labor Day	Tuesday, September $2^{\text {nd }}$ §12.6 Quadric Surfaces	Wednesday, September $3{ }^{\text {rd }}$ §11.10 Taylor Series	Friday, September $5^{\text {th }}$ §12.7 Cyl. \& Sph. Coordinates
Monday, September $8^{\text {th }}$ §13.1 Vector Functions	$\begin{gathered} \text { Tuesday, September } 9^{\text {th }} \\ \S 13.2 \& \S 13.4 \mathbf{r}^{\prime}(\mathrm{t}) \end{gathered}$	Wednesday, September $10^{\text {th }}$ §13.3 Arc Length \& Curvature	Friday, September $12^{\text {th }}$ $\S 14.1 \mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$
Monday, September $15^{\text {th }}$ §14.2 Limits \& Continuity	Tuesday, September $16^{\text {th }}$ §14.2 Limits \& Continuity	Wednesday, September $17^{\text {th }}$ §14.3 Partial Derivatives	Friday, September $19^{\text {th }}$ §14.4 Tangent Planes
Monday, September $22^{\text {nd }}$ §14.5 Chain Rule	Tuesday, September $23^{\text {rd }}$ §14.6 Directional Derivatives	Wednesday, September $24^{\text {th }}$ §14.7 Optimization	Friday, September $26^{\text {th }}$ §14.7 Optimization
Monday, September $29^{\text {th }}$ §14.8 Constrained Optimization	Tuesday, September 30 ${ }^{\text {th }}$ Review for Exam	Wednesday, October $1^{\text {st }}$ Exam 1	Friday, October $3^{\text {rd }}$ §15.1 Double Integrals
Monday, October $6^{\text {th }}$ §15.1 Double Integrals	Tuesday, October $7^{\text {th }}$ §15.2 More Double Integrals	Wednesday, October $8^{\text {th }}$ §15.3 General Double Int.	Friday, October $10^{\text {th }}$ §15.4 Double Int. in Polar
Monday, October $13^{\text {th }}$ No Class - Fall Break	Tuesday, October $14^{\text {th }}$ No Class - Fall Break	Wednesday, October $15^{\text {th }}$ §15.5 Applications	Friday, October $17^{\text {th }}$ §15.5 Applications
Monday, October $20^{\text {th }}$ §15.6 Surface Area	Tuesday, October $21^{\text {st }}$ §15.7 Triple Integrals	Wednesday, October $22^{\text {nd }}$ §15.7 Triple Integrals	Friday, October $24^{\text {th }}$ §15.8 Int. in Cyl. \& Sph.
Monday, October $27^{\text {th }}$ §15.8 Int. in Cyl. \& Sph.	Tuesday, October $28^{\text {th }}$ §15.9 The Jacobian	Wednesday, October 29 ${ }^{\text {th }}$ Review for Exam	Friday, October $31^{\text {st }}$ Exam 2
Monday, November $3{ }^{\text {rd }}$ §16.1 Vector Fields	Tuesday, November $4^{\text {th }}$ §16.2 Line Integrals	Wednesday, November $5^{\text {th }}$ §16.2 Line Integrals	Friday, November $7^{\text {th }}$ §16.3 Fund. Thm. of Line Int.
Monday, November $10^{\text {th }}$ §16.4 Green's Theorem	Tuesday, November $11^{\text {th }}$ §16.5 Curl \& Divergence	Wednesday, November $12^{\text {th }}$ §16.6 Parametric Surfaces	Friday, November $14^{\text {th }}$ §16.7 Surface Integrals
Monday, November $17^{\text {th }}$ §16.8 Stokes' Theorem	Tuesday, November $18^{\text {th }}$ §16.8 Stokes' Theorem	Wednesday, November $19^{\text {th }}$ §16.9 Divergence Theorem	Friday, November $21^{\text {st }}$ §16.10 Summary
Monday, November $24^{\text {th }}$ Review for Exam	Tuesday, November $25^{\text {th }}$ Exam 3	Wednesday, November $26^{\text {th }}$ No Class - Thanksgiving Break	Friday, November $28^{\text {th }}$ No Class - Thanksgiving Break
Monday, December $1^{\text {st }}$ Euler's Formula	Tuesday, December $2^{\text {nd }}$ Complex Arithmetic	Wednesday, December $3^{\text {rd }}$ Complex Arithmetic	Friday, December $5^{\text {th }}$ Review
Final Exam - 11am on Monday, December $8^{\text {th }}$ or 11am on Wednesday, December $10^{\text {th }}$			

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

Calculus 3 MTWF 11:00-10:50am/1:00-1:50pm Fall 2008 Stuart 308

Math Culture Points

A portion of the grade for this course will take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity	Points	Maximum
Colloquium Attendance	5	-
Colloquium Presentation	10	2
Conference Attendance MathFest (July 31 st-August 2nd $)$	15	2
Mathematics Competition Participation Iowa Mathematical Modeling Competition (October 25		
Putnam Competition (December 6		
Math $)$	10	2
Some weeks specific readings will be posted on the course web page Selected chapters from Berlinski's Tour With approval, any relevant column on MAA.org With approval, any relevant article from Math Horizons, CMJ, etc.	5	-
Math Club Activities (when appropriate) Movies, Speakers, mathematical portion of Playground of Science, etc.	5	3
Volunteer Math Outreach Working with students at Polk Elementary, etc.	5	3

Generally Math Culture Points can be earned for at most two activities in any given week, so you should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and submitting a brief summary/response via email. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event.

