CALCULUS 3 MTWF 11:00-10:50AM/1:00-1:50PM FALL 2008 STUART 308

Instructor: Jonathan White E-Mail: JWhite@Coe.Edu

Web Page: public.coe.edu/~jwhite

Office: Stuart 316

Office Hours: MTWF 2:00-2:50pm and by appointment

Office Phone: 399-8280

Home Phone: 841-5111 (between 7am and 10pm)

Text: Calculus, Early Transcendentals, 5th Edition, James Stewart

Problem Sets There will be several problem sets and quizzes during the semester, as well as online

& Quizzes: WeBWorK assignments. Together these will be worth 200 points

Math Culture Points will constitute 50 points. These will be earned through participation in

Points: various activities outside of class, as detailed elsewhere.

Exams: There will be three in-class exams administered during class time. The dates of these are

indicated in the schedule on the back side of this sheet. These exams will be worth 100 points

each.

The final exam will be held during finals week at the date and time indicated on the back side

of this sheet. The final will be worth 200 points.

Grading: Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale. Current grade

information will be available online through Moodle at all times.

Makeups: For the sake of fairness to those who follow the schedule, makeups for exams will be allowed

only under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted will

generally be subject to a penalty of 20% of the possible points for each day past due.

Any student entering this class should already be aware that calculus is the mathematics of changing quantities. The major development in Calculus 3 is that we widen our scope to functions of more than one variable. This simultaneously adds tremendously to the breadth of phenomena that can be addressed, and also introduces complications that have no analog in the essentially two-dimensional world of Calculus 1 and 2.

Calculus 3 is the culmination of the calculus sequence, and this presents challenges in at least three respects. First, ability to visualize and use spatial intuition is taken to a new level. Second, computations are in some cases correspondingly bigger and longer. Third, abstract theoretical considerations become a more central element, sometimes overshadowing mere computations as the most important material. In response to all three of these considerations the judicious use of technology can be a valuable aid. Sophisticated calculators such as the TI-89 and computer software packages such as *Mathematica*, when used properly, can lead to easier and deeper understanding of the course material. However the use of this technology itself involves a significant learning experience, and often significant frustrations. We will attempt to use *Mathematica* in this course when the benefits are the greatest, and assist you in its use enough to keep the frustrations to a minimum.

Students must pass an online integration gateway exam by Friday of the fourth week of class or lose 5% of the total points possible for each additional week or part of a week before passing.

If at some point these challenges or frustrations get too bad, I strongly encourage you to see me for extra explanation -- don't wait until you're overwhelmed. I'm here to help.

CALCULUS 3 MTWF 11:00-10:50AM/1:00-1:50PM FALL 2008 STUART 308

Tentative Schedule

Monday, August 25^{th} §12.1-2 \mathbb{R}^3 and Vectors	Tuesday, August 26 th §12.3 Dot Products		
Monday, September 1 st No Class – Labor Day	Tuesday, September 2 nd §12.6 Quadric Surfaces	Wednesday, September 3 rd §11.10 Taylor Series	Friday, September 5 th §12.7 Cyl. & Sph. Coordinates
Monday, September 8 th §13.1 Vector Functions	Tuesday, September 9 th §13.2 & §13.4 r '(t)	Wednesday, September 10 th §13.3 Arc Length & Curvature	Friday, September 12^{th} $\$14.1 \text{ f:}\mathbb{R}^n \rightarrow \mathbb{R}$
Monday, September 15 th §14.2 Limits & Continuity	Tuesday, September 16 th Wednesday, September \$14.2 Limits & Continuity \$14.3 Partial Derivativ		Friday, September 19 th §14.4 Tangent Planes
Monday, September 22 nd §14.5 Chain Rule			Friday, September 26 th §14.7 Optimization
Monday, September 29 th §14.8 Constrained Optimization	Tuesday, September 30 th Review for Exam		
Monday, October 6 th §15.1 Double Integrals	· ·		Friday, October 10 th §15.4 Double Int. in Polar
Monday, October 13 th No Class – Fall Break	Tuesday, October 14 th No Class – Fall Break	Wednesday, October 15 th §15.5 Applications	Friday, October 17 th §15.5 Applications
Monday, October 20 th §15.6 Surface Area	Tuesday, October 21 st §15.7 Triple Integrals	Wednesday, October 22 nd §15.7 Triple Integrals	Friday, October 24 th §15.8 Int. in Cyl. & Sph.
Monday, October 27 th §15.8 Int. in Cyl. & Sph.	Tuesday, October 28 th §15.9 The Jacobian	Wednesday, October 29 th Review for Exam	Friday, October 31 st Exam 2
Monday, November 3 rd §16.1 Vector Fields	• • • • • • • • • • • • • • • • • • • •		Friday, November 7 th §16.3 Fund. Thm. of Line Int.
Monday, November 10 th §16.4 Green's Theorem	Tuesday, November 11 th §16.5 Curl & Divergence	Wednesday, November 12 th §16.6 Parametric Surfaces	Friday, November 14 th §16.7 Surface Integrals
Monday, November 17 th §16.8 Stokes' Theorem	Tuesday, November 18 th §16.8 Stokes' Theorem	Wednesday, November 19 th §16.9 Divergence Theorem	Friday, November 21 st §16.10 Summary
Monday, November 24 th Review for Exam	Tuesday, November 25 th Exam 3	Wednesday, November 26 th No Class – Thanksgiving Break	Friday, November 28 th No Class – Thanksgiving Break
Monday, December 1 st Euler's Formula	Tuesday, December 2 nd Complex Arithmetic	Wednesday, December 3 rd Complex Arithmetic	Friday, December 5 th Review
Final	Exam – 11am on Monday, Decembe	r 8 th or 11am on Wednesday, Decembe	r 10 th

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

CALCULUS 3 MTWF 11:00-10:50am/1:00-1:50pm Fall 2008 Stuart 308

Math Culture Points

A portion of the grade for this course will take the form of Math Culture Points. These will be earned through activities outside of class including, but not necessarily limited to, those listed below:

Activity	Points	Maximum
Colloquium Attendance	5	_
Colloquium Presentation	10	2
Conference Attendance MathFest (July 31st-August 2nd)	15	2
Mathematics Competition Participation Iowa Mathematical Modeling Competition (October 25 th -26 th) Putnam Competition (December 6 th)	10	2
Math Culture Reading Some weeks specific readings will be posted on the course web page Selected chapters from Berlinski's <i>Tour</i> With approval, any relevant column on MAA.org With approval, any relevant article from <i>Math Horizons</i> , <i>CMJ</i> , etc.		- 5 3 3
Math Club Activities (when appropriate) Movies, Speakers, mathematical portion of Playground of Science, etc.		3
Volunteer Math Outreach Working with students at Polk Elementary, etc.		2

Generally Math Culture Points can be earned for at most two activities in any given week, so you should plan to spread your participation throughout the semester. In each case above, credit assumes both full participation and submitting a brief summary/response via email. These reflections should generally be between 100 and 300 words, and include both a brief summary and your personal thoughts on the event.