## Fake Quiz 2 Calc 3 11/30/2011

This is a fake quiz, this is only a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is only a fake quiz.

1. Compute  $\int_C (x^2 + y^2) dx - x dy$  along the quarter circle from (1,0) to (0,1).

Integrate the long way to get  $-1 - \pi/4$ .

2. Evaluate  $\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma$  for the hemisphere S:  $x^{2} + y^{2} + z^{2} = 9, z \ge 0$  and the field  $\mathbf{F} = y\mathbf{i} - x\mathbf{j}$ .

Use Stokes' Theorem to get  $-18\pi$ .

3. Evaluate  $\int (\sin y \sinh x + \cos y \cosh x) dx + (\cos y \cosh x - \sin y \sinh x) dy$  where C is the line segment from (1,0) to (2, $\pi/2$ ).

Integrate using the Fundamental Theorem for Line Integrals (the potential function is  $f = \sin y \cosh x + \cos y \sinh x$ ) to get  $\cosh 2 - \sinh 1$ .

4. Evaluate  $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$ , where  $\mathbf{F}(x,y,z) = 4x\mathbf{i} - 3y\mathbf{j} + 7z\mathbf{k}$  and S is the surface of the cube bounded by the coordinate planes and the planes x = 1, y = 1, and z = 1.

Integrate using the Divergence Theorem to get 8.

5. Evaluate,  $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$  where  $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 2z \mathbf{k}$  and S is the portion of the cone  $z^{2} = x^{2} + y^{2}$  between the planes z = 1 and z = 2, oriented upwards.

Integrate the long way to get  $14\pi/3$ .

6. Evaluate  $\int_C (x^2 - y) dx + x dy$ , where C is the circle  $x^2 + y^2 = 4$  with counterclockwise orientation.

Use Green's Theorem to get  $8\pi$ .

7. Evaluate  $\iint_{S} \langle x^{3}, x^{2}y, xy \rangle \cdot d\mathbf{S}$ , where S is the surface of the solid bounded by  $z = 4 - x^{2}, y + z = 5, z = 0$ , and y = 0.

Use the Divergence Theorem to get 4608/35.

8. Compute  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where  $\mathbf{F}(x,y,z) = y \mathbf{i} + z \mathbf{j} - x \mathbf{k}$  and C is the line segment from (1,1,1) to (-3,2,0).

Integrate the long way to get -13/2.

9. Compute 
$$\int_C \left\langle \ln(1+y), -\frac{xy}{1+y} \right\rangle \cdot d\mathbf{r}$$
 where C is the triangle with vertices (0,0), (2,0), and (0,4).

Use Green's Theorem to get -4.

10. Evaluate 
$$\int_{(0,1)}^{(\pi,-1)} y \sin x \, dx - \cos x \, dy$$
.

Use the Fundamental Theorem for Line Integrals (the potential function is  $f = -y \cos x$ ) to get 0.

11. Compute,  $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$  where  $\mathbf{F}(x, y, z) = 2y \mathbf{j} + \mathbf{k}$  and S is the portion of the paraboloid  $z = x^{2} + y^{2}$  below the plane z = 4 with positive orientation.

Use the long way to get  $-12\pi$ .

12. Compute  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where  $\mathbf{F}(x,y,z) = \langle 4x, 7y, -3z \rangle$  and *C* is the boundary of the first-octant portion of a sphere with radius 5 (centered at the origin).

Use Stokes' Theorem to conclude that, since curl F is 0, the surface integral (and hence the line integral) is 0.