Due 10/31/2012 Quiz 6 Calculus 1

Each problem is worth 5 points. Clear and complete justification is required for full credit.

$$f(x) = x^{1/3}$$

$$f'(x) = \frac{1}{3}x^{2/3}$$

$$f'(8) = \frac{1}{3(8^{2/3})} = \frac{1}{12}$$

1. a) Find the linear approximation
$$L(x)$$
 for $f(x) = \sqrt[3]{x}$ at 8.

$$f(x) = x^{1/3} \qquad f(8) = \sqrt[3]{8} = 2$$

$$f'(8) = \frac{1}{3(8^{3/4})} = \frac{1}{12} \qquad L(x) = \frac{1}{12} (x - 8) + 2$$
b) Use your linearization from part a to approximate $\sqrt[3]{8.01}$.

$$L(8.01) = \frac{1}{12} (8.01 - 8) + 2$$

b) Use your linearization from part a to approximate $\sqrt[3]{8.01}$.

$$L(8.01) = \frac{1}{12}(8.01-8) + 2$$

(8.01) = 2.00083c) Use your linearization from part a to approximate $\sqrt[3]{8.1}$.

$$L(8.1) = \frac{1}{12}(8.1-8) + 2$$

 $L(8.1) = 2.0083$

d) Use your Linearization from part a to approximate $\sqrt[3]{27}$.

2. a) Find the linear approximation L(x) for $f(x) = \arctan x$ at 0.

$$f'(x) = \frac{1}{1+x^2}$$

$$f(0) = \frac{1}{1+0^2} = 1$$

$$f'(x) = \frac{1}{1+x^2} \qquad f(0) = +an^{-1}(0) = 0$$

$$f'(0) = \frac{1}{1+o^2} = 1$$

$$L(x) = 1(x-0) + 0$$

b) Use your Linearization from part a to approximate arctan 0.1.

