Each problem is worth 2 points. For full credit provide complete justification for your answers. Set up in terms of a single coordinate system, i.e., if you use cylindrical your integral should involve no x or y, etc.

Great!

2. Set up an iterated integral for the volume below $z = x^2y$, above the region shown below.

3. Set up iterated integrals for $\iint_R x \, dA$, where R is the region outside a circle with radius 2, but inside a circle with radius 3, with $y \ge 0$.

Top View

Excellent!

$$x^{2} = 4x$$

 $x(x-4) = 0$
 $x = 0, 4$
 $y = 0, 16$

5. Set up an integral for the volume of the region bounded above by the top half of a sphere with radius 5 and below by the cone $z = \sqrt{x^2 + y^2}$.

