Exam 3 Calc 1 10/26/2018

Each problem is worth 10 points. For full credit provide complete justification for your answers. 1. What is $(\ln x)'$?

- 2. a) What is $(xe^x)'$?
 - b) What is $(x \arcsin x)'$?
 - c) What is $(x \cosh x)'$?

3. Evaluate $\lim_{x\to\infty} \frac{x}{e^x}$. Be sure to provide good justifications for your steps.

4. Differentiate
$$y = x \cos^{-1} x - \sqrt{1 - x^2}$$
. [Hint: $(\cos^{-1} x)' = \frac{-1}{\sqrt{1 - x^2}}$]

Yea	r	Population	Year	Population
175	0	790	1900	1650
180	0	980	1950	2560
185	0	1260	2000	6080

5. [Stewart] The table below gives estimates of the world population, in millions, from 1750 to 2000:

Use the exponential model and the population figures for 1800 and 1850 to predict the world population in 1900. Compare with the actual population.

6. Show why $(a^x)' = (\ln a)a^x$.

7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Geez, calculus is hard! All this ticky-tack stuff is just literally killing me. Like, you know, sometimes they write 1 over sin, and sometimes they write sin⁻¹, and sometimes they write arcsin, and sometimes they write csc, and I think maybe they're all the same, but who the heck knows? I bet literally nobody actually can tell which ones are different. "

Explain clearly to Biff which of the functions he describes are actually the same, and which are different, and why.

8. Show that if $g(x) = \tan^{-1} x$ then

 $g(x) = \frac{1}{1+x^2}$.

9. Why is
$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}}$$
?

10. Evaluate $\lim_{x\to 0^+} x \ln x$. Be sure to provide good justifications for your steps.

Extra Credit (5 points possible): Evaluate $\lim_{x\to 0^+} x^x$. Be sure to provide good justifications for your steps.