Fake Exam 4 Calc $1 \quad$ 11/14/2018

Each problem is worth 0 points. For full credit learn enough to do well on the real exam.

1. Find the maximum value of $f(x)=5 x-x^{2}$.
2. Find the maximum value of $f(x)=5 x-x^{2}$ on $[0,10]$.
3. Find the largest interval on which $f(x)=x e^{-x}$ is increasing.
4. Find the largest interval on which $f(x)=x e^{-x}$ is concave up.
5. Find all local maxima of $f(x)=\sin x+\cos x$.
6. Find the largest interval on which $f(x)=3 x^{3}-2 x^{2}+x-7$ is decreasing.
7. Use Newton's method to calculate x_{1}, and x_{2} for $\sqrt[3]{15}$ with $x_{0}=2$ as the initial approximation.
8. Squares with sides of length x are cut out of each corner of a rectangular sheet of metal measuring 6 ft by 4 ft . The resulting piece of cardboard is then folded into a box without a lid. The box is to be used as a container for mutant super piranhas, so it's only being filled to a level 6 inches below the brim to prevent escape. Find the largest volume of water that can be contained in such a box.
9. Find the intervals on which the graph of $y=e^{-x^{2} / 2}$ is concave up.
10. Economists use terminology closely related to ours, so if $R(x)$ is a function that tells the revenue generated by selling x units, then they call the function $R^{\prime}(x)$ the marginal revenue function. Similarly if $C(x)$ is a function that tells the cost to the company of producing x units, then they call the function $C^{\prime}(x)$ the marginal cost function. They also get really excited about $P(x)=R(x)-C(x)$, the profit generated when selling x units.

Show that profit is maximized when marginal cost is equal to marginal revenue.

