Problem Set 4 Calculus 1 Due 11/13/18

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers.

1. Use Newton's Method with the function $f(x)=x^{2}-2$ and initial value $x_{0}=2$ to calculate x_{1}, x_{2}, x_{3}.
2. Use Newton's method to find the second and third approximation of a root of

$$
x^{3}+x+3=0
$$

starting with $x_{0}=-1$ as the initial approximation.
3. Use Newton's method to calculate x_{1}, x_{2}, x_{3} for $\sqrt[3]{13}$ with $x_{0}=2$ as the initial approximation.
4. [WW] Use Newton's Method on the equation

$$
f(x)=x(x-1)(x+1)=x^{3}-x=0
$$

with initial approximation $x_{0}=\frac{1}{\sqrt{3}}$. Explain what's going on well.
5. [WW] Use Newton's Method on the equation

$$
f(x)=x(x-1)(x+1)=x^{3}-x=0
$$

with initial approximation $x_{0}=\frac{\sqrt{5}}{5}$. Find x_{1}, x_{2}, x_{3}, and x_{4}. Explain what's going on well.

