1. Fill each blank below with a limit law justifying that equality. Each blank is worth 1 point.

Calculus 1

Let a and c be constants. Then

Constant Law for Limits: $\lim_{x \to a} k = k$

Law X for Limits:
$$\lim_{x \to a} x = a$$

And as long as $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ are real numbers,

Sum Law for Limits:	$\lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
Difference Law for Limits:	$\lim_{x \to a} \left[f(x) - g(x) \right] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$
Constant Multiple Law for Limits	s: $\lim_{x \to a} \left[c \cdot f(x) \right] = c \cdot \lim_{x \to a} f(x)$
Product Law for Limits:	$\lim_{x \to a} \left[f(x) \cdot g(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
Quotient Law for Limits:*	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$
Power Law for Limits:**	$\lim_{x \to a} \left[f(x) \right]^{p/q} = \left[\lim_{x \to a} f(x) \right]^{p/q}$

* provided $\lim_{x\to a} g(x) \neq 0$.

** provided $\lim_{x \to a} f(x) \ge 0$ when q is even and $\lim_{x \to a} f(x) \ne 0$ if p/q < 0.