Problem Set 3Real Analysis 1Due 9/17/18

Four of these problems will be graded, with each problem worth 5 points. Clear and complete justification is required for full credit. You are welcome to discuss these problems with anyone and everyone, but must write up your own final submission without reference to any sources other than the textbook and instructor.

- 1. If a sequence $\{a_n\}$ converges to 0, and a sequence $\{b_n\}$ is bounded, then the sequence $\{a_nb_n\}$ converges to 0.
- 2. If a sequence $\{a_n\}$ converges to 0, and $\{a_nb_n\}$ converges to zero, then the sequence $\{b_n\}$ is bounded.
- 3. Determine whether $\lim_{n\to\infty} \frac{1}{n} \sin \frac{1}{n}$ exists, and find its value. [Kosmala 2.2.11(l)]
- 4. Suppose that the sequence {*a_n*} diverges to +∞. Find examples of sequences {*a_n*} and {*b_n*} so that {*a_n*/*b_n*}
 (a) diverges to +∞.
 - (b) converges to 7.
 - (c) converges to 0.
 - (d) diverges to $-\infty$.
 - (e) oscillates.
- 5. Suppose $\{a_n\}$ and $\{b_n\}$ both oscillate. Then $\{a_n \cdot b_n\}$ and $\{a_n + b_n\}$ oscillate.
- 6. Every Cauchy sequence is bounded. [No fair using the CCC!]
- 7. If $\{a_n\}$ is a Cauchy sequence and $S = \{a_n | n \in \mathbb{N}\}$ is finite, then $\{a_n\}$ is constant from some point on.
- 8. Let s_0 be an accumulation point of *S*. Then any neighborhood of s_0 contains at least one point of *S* different from s_0 iff any neighborhood of s_0 contains infinitely many points of *S*.