Exam 1 Calc 3 9/27/2019

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. State the formal definition of the partial derivative of a function $f(x, y)$ with respect to y.
2. Suppose that w is a function of x and y, each of which is a function of s, t, u, and v. Write the Chain Rule formula for $\frac{\partial w}{\partial v}$. Make very clear which derivatives are partials.
3. Find the directional derivative of $f(x, y)=\sqrt{x y}+\frac{x}{y}$ at the point $(12,3)$ in the direction of $\mathbf{v}=\langle-3,4\rangle$.
4. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{(-5 x+y)^{2}}{25 x^{2}+y^{2}}$ does not exist.
5. Let $f(x, y)=\frac{x}{x^{2}+y^{2}}$. Find the maximum rate of change of f at the point $(2,3)$ and the direction in which it occurs.
6. Show that for any vectors \vec{a} and \vec{b}, the vector $\vec{a} \times \vec{b}$ is perpendicular to \vec{b}.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Crap, this Calc 3 stuff is killing me. There was this question on our practice exam about, like, how many different surfaces could have the same level curves? And I figured it was a trick question so I said yes lots, but I have no clue why that's right. I mean, is it like, there's exactly three surfaces with the same level curves, or more, or what?"

Explain clearly to Biff whether there is only one function with a particular set of level curves, or if there can be two or more.
8. Find and classify all critical points of $f(x, y)=3 x^{2}-y^{3}-6 x y+5$.
9. Find the extreme values of $f(x, y)=x^{2}+y^{2}-2 x+4 y-1$ subject to the constraint $x^{2}+y^{2} \leq 9$.
10. At what point(s) on the surface

$$
y=x^{2}+z^{2}
$$

is the tangent plane parallel to the plane

$$
x+2 y+3 z=1 ?
$$

Extra Credit (5 points possible):
What's going on with the directional derivatives of $f(x, y)=\sqrt[3]{x y}$ at $(0,0)$?

