Fake Quiz 2 Calc 3 10/22/2019

1. Let $f(x, y)=4 x^{2}+9 y^{2}$. Let R be the parallelogram with vertices $(0,0),(2,2),(2,5)$, and $(0,3)$. Set up an iterated integral for $\iint_{R} f d A$.

$$
\int_{0}^{2} \int_{x}^{x+3}\left(4 x^{2}+9 y^{2}\right) d y d x
$$

2. Set up iterated integrals for the center of mass of the first-quadrant portion of a circle with radius 1 and evaluate them.

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{\pi / 2} \int_{0}^{1} k r^{2} \cos \theta d r d \theta}{\int_{0}^{\pi / 2} \int_{0}^{1} k r d r d \theta}=\frac{4}{3 \pi} \\
& \bar{y}=\frac{\int_{0}^{\pi / 2} \int_{0}^{1} k r^{2} \sin \theta d r d \theta}{\int_{0}^{\pi / 2} \int_{0}^{1} k r d r d \theta}=\frac{4}{3 \pi}
\end{aligned}
$$

3. Set up an iterated integral for the volume above $z=\sqrt{x^{2}+y^{2}}$ and below $z=9$.

$$
\int_{0}^{2 \pi} \int_{0}^{9} \int_{r}^{9} 1 r d z d r d \theta
$$

4. Set up an iterated integral for the volume above $z=\sqrt{x^{2}+y^{2}}$ and inside $x^{2}+y^{2}+z^{2}=9$.

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{3} 1 \rho^{2} \sin \phi d \rho d \phi d \theta
$$

