You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers.

1. Find the centroid of the solid bounded by $z=9-x^{2}-y^{2}$ and the plane $z=0$.
2. Find the centroid of the solid bounded by $z=9-x^{2}-y^{2}$ above the plane $z=0$ and below the plane $z=b$ for some value $0 \leq b \leq 9$.
3. Use an iterated integral to find the volume of the solid bounded by $z=h-\frac{h}{a} \sqrt{x^{2}+y^{2}}$ and $z=0$.
4. Use a double integral to find the volume of the solid with right triangular base with legs of length a and b, but extending up from that base in such a way that the three vertical edges are of lengths h_{a}, h_{b}, and h_{v}, with the top surface being a plane.

