Exam 1Modern Algebra 19/16/20

Do questions 1 through 7 and pick three of the remaining (lettered) questions for grading (check boxes of the lettered problems you want graded or I roll dice). Each problem is worth 10 points. Show good justification for full credit. Don't panic.

1. State the definition of a group.

2. Let $\alpha : S \to T$ be a mapping. State the definition of the inverse mapping of α .

3. Give an example of a subgroup of \mathbb{Z} with addition that is not \mathbb{Z} itself. Explain how you know it's a subgroup.

4. In S_3 , let $\alpha = (1 \ 3 \ 2)$ and $\beta = (3 \ 1)$.

(a) Find α^{-1} .

(b) Compute $\alpha \circ \beta$

5. Show that the identity element in a group is unique.

- 6. Let \mathbb{Z} be the set of integers, and define * on \mathbb{Z} as: m * n = m + n + mn.
 - (a) Is * commutative?

(b) Does * have an identity?

- 7. Let *G* be a group with operation *, and let *H* be a subset of *G*. Show that *H* is a subgroup of *G* iff
 - (a) *H* is nonempty,
 - (b) if $a \in H$ and $b \in H$, then $a * b \in H$, and
 - (c) if $a \in H$, then $a^{-1} \in H$.

 \square A. Determine, with proof, whether the set of 2 by 2 matrices of the form

$$\left[\begin{array}{cc}a&b\\0&c\end{array}\right]$$

with *a*, *b*, *c* positive real numbers, forms a group with matrix multiplication.

□ B. Let *G* be a group, and $a \in G$. Suppose for some (one) $b \in G$, a * b = b. Is it necessarily the case that a = e, the identity of *G*?

□ C. Let *G* be a group, and let $Z(G) = \{x \in G : x * a = a * x \text{ for all } a \in G\}$. Show Z(G) is a subgroup of *G*.

 \Box D. Give three distinct subgroups of S_4 .

 \square E. Write (12465) as a product of two-cycles.

□ F. Solve the equation $(1 \ 2 \ 3) \circ x \circ (4 \ 1) = (1 \ 5 \ 2)$, that is, find an element *x* of *S*₅ that makes the equation true.