Exam 1 Modern Algebra 1 9/16/20

Do questions 1 through 7 and pick three of the remaining (lettered) questions for grading (check boxes of the lettered problems you want graded or I roll dice). Each problem is worth 10 points. Show good justification for full credit. Don't panic.

1. State the definition of a group.
2. Let $\alpha: S \rightarrow T$ be a mapping. State the definition of the inverse mapping of α.
3. Give an example of a subgroup of \mathbb{Z} with addition that is not \mathbb{Z} itself. Explain how you know it's a subgroup.
4. In S_{3}, let $\alpha=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ and $\beta=\left(\begin{array}{ll}3 & 1\end{array}\right)$.
(a) Find α^{-1}.
(b) Compute $\alpha \circ \beta$
5. Show that the identity element in a group is unique.
6. Let \mathbb{Z} be the set of integers, and define $*$ on \mathbb{Z} as: $m * n=m+n+m n$.
(a) Is $*$ commutative?
(b) Does * have an identity?
7. Let G be a group with operation *, and let H be a subset of G. Show that H is a subgroup of G iff
(a) H is nonempty,
(b) if $a \in H$ and $b \in H$, then $a * b \in H$, and
(c) if $a \in H$, then $a^{-1} \in H$.
\square A. Determine, with proof, whether the set of 2 by 2 matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]
$$

with a, b, c positive real numbers, forms a group with matrix multiplication.
\square B. Let G be a group, and $a \in G$. Suppose for some (one) $b \in G, a * b=b$. Is it necessarily the case that $a=e$, the identity of G ?
\square C. Let G be a group, and let $Z(G)=\{x \in G: x * a=a * x$ for all $a \in G\}$. Show $Z(G)$ is a subgroup of G.
\square D. Give three distinct subgroups of S_{4}.
\square E. Write (12465) as a product of two-cycles.
\square F. Solve the equation $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \circ x \circ\left(\begin{array}{ll}4 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 5 & 2\end{array}\right)$, that is, find an element x of S_{5} that makes the equation true.

