Exam 3 Calc 1 10/22/2021

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Let $f(x)=e^{x}$. What is $f^{\prime}(x)$?
b) Let $g(x)=\ln x$. What is $g^{\prime}(x)$?
2. a) What is $(\arcsin x)^{\prime}$?
b) What is $(\arctan x)^{\prime}$?
3. What is $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}$?
4. A table of values for f, g, f^{\prime}, and g^{\prime} is given below.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	-1	2	5	4
2	6	7	2	5
3	9	3	1	7

a) If $h(x)=\arcsin (f(x))$, what is $h^{\prime}(2)$ and why?
b) If $h(x)=\arctan x \cdot g(x)$, what is $h^{\prime}(1)$ and why?
5. Show why the derivative of $\ln x$ is what it is.
6. Show why the derivative of $\arcsin x$ is what it is.
7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "I think Calculus is totally unfair! It's like there's always a new thing so you never get to know it all, you know? So like there's this new function where its derivative is 1 over 1 plus x^{2}, right? But that was totally already the derivative of \ln of 1 plus x^{2}, right? So it's like it's hopeless! There's no way you can understand 70% of something if they keep adding extra stuff!"

Explain clearly to Bunny if there's anything she should understand better about the situation.
8. [Stewart] The half-life of radium-226 is 1590 years. A sample begins with a mass of 200 mg.
a) Find a formula for the mass of radium-226 remaining after t years have elapsed.
b) When (to the nearest year) will the sample be reduced to 150 mg of radium- 226 ?
9. Evaluate $\lim \cot 2 x \sin 6 x$
10. Let $S(x)=\frac{e^{x}-e^{-x}}{2}$ and let $C(x)=\frac{e^{x}+e^{-x}}{2}$. What's interesting about the derivatives of $S(x)$ and $C(x)$?

Extra Credit (5 points possible):
Evaluate $\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}$ [Hint:You can almost use L'Hôpital's Rule on $\lim _{m \rightarrow \infty} m \ln \left(1+\frac{1}{m}\right)$, so try that for a start.]

