Exam 3 Calc 1 10/22/2021

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Let $f(x) = e^x$. What is f'(x)?

b) Let $g(x) = \ln x$. What is g'(x)?

2. a) What is $(\arcsin x)'$?

b) What is $(\arctan x)'$?

3. What is
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$$
?

4. A table of values for f, g, f', and g' is given below.

x	f(x)	g(x)	f'(x)	g'(x)
1	-1	2	5	4
2	6	7	2	5
3	9	3	1	7

a) If $h(x) = \arcsin(f(x))$, what is h'(2) and why?

b) If $h(x) = \arctan x \cdot g(x)$, what is h'(1) and why?

5. Show why the derivative of $\ln x$ is what it is.

6. Show why the derivative of $\arcsin x$ is what it is.

7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "I think Calculus is totally unfair! It's like there's always a new thing so you never get to know it all, you know? So like there's this new function where its derivative is 1 over 1 plus x^2 , right? But that was totally already the derivative of ln of 1 plus x^2 , right? So it's like it's hopeless! There's no way you can understand 70% of something if they keep adding extra stuff!"

Explain clearly to Bunny if there's anything she should understand better about the situation.

- 8. [Stewart] The half-life of radium-226 is 1590 years. A sample begins with a mass of 200 mg.
 - a) Find a formula for the mass of radium-226 remaining after *t* years have elapsed.

b) When (to the nearest year) will the sample be reduced to 150 mg of radium-226?

9. Evaluate $\lim_{x\to 0} \cot 2x \sin 6x$

10. Let $S(x) = \frac{e^x - e^{-x}}{2}$ and let $C(x) = \frac{e^x + e^{-x}}{2}$. What's interesting about the derivatives of S(x) and C(x)?

Extra Credit (5 points possible):

Evaluate $\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m$ [Hint:You can almost use L'Hôpital's Rule on $\lim_{m \to \infty} m \ln \left(1 + \frac{1}{m} \right)$, so try that for a start.]