Exam 2 Calc 3 10/22/2021

Each problem is worth 10 points. For full credit provide complete justification for your answers. All integrals should be set up in terms of a single coordinate system, i.e., if you use cylindrical your integral should involve no x or y, etc.

1. Write a double Riemann sum for $\iint_{R} f d A$, where $R=\{(x, y): 1 \leq x \leq 5,2 \leq y \leq 8\}$ using midpoints with $n=m=2$ subdivisions.
2. Kansas is close enough to a rectangle 400 miles from west to east and 200 miles from south to north. Suppose that in some year the wheat harvest in Kansas is given by $w(x, y)=4000+$ $10 x+15 y$ bushels per square mile, where we consider Kansas to be located on a standard coordinate system with the southwest corner positioned at $(0,0)$. Set up a double integral for the total wheat harvest in Kansas for this year.
3. Set up an iterated integral for the total mass of a plate shaped like the region shown below, with density $\rho(x, y)=5$.

4. Set up an iterated integral for the volume of the region under $z=36-x^{2}-y^{2}$ but above the $x y$-plane.
5. Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{x^{3}+1} d x d y$.
6. Show that the Jacobian for the conversion from rectangular to polar coordinates is what it is.
7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "OMG! Calc 3 is just so much! It's like, there's a,lways another thing, right? So like why would I evereverever use spherical coordinates for anything? I mean you can totally do a sphere in cylindrical coordinates, right? Just stop already!"

Explain clearly to Bunny when there might be situations in which spherical coordinates should be appreciated.
8. Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} 6 d z d y d x$.
9. Set up an iterated integral to integrate $f(x, y, z)=12 x z$ over the region in the first octant above the parabolic cylinder $z=y^{2}$ and below the paraboloid $z=8-2 x^{2}-y^{2}$.
10. A lamina occupies the part of a disk $x^{2}+y^{2} \leq 1$ in the first quadrant. Set up iterated integrals to find the center of mass if the density at any point is proportional to its distance from the x axis.

Extra Credit (5 points possible): Find the center of mass of the lamina from \#10.

