Each problem is worth 10 points. For full credit provide good justification for your answers.

1. Find the critical numbers of $f(x)=x^{3}-12 x^{2}+36 x$.

$$
f(x)=x^{3}-12 x^{2}+36 x
$$

I) $f^{\prime}(x)=3 x^{2}-24 x+36$

$$
=3\left(x^{2}-8 x+12\right)
$$

II)

$$
\begin{aligned}
0 & =3\left(x^{2}-2 x-6 x+12\right) \\
& =3(x(x-2)-6(x-2) \\
& =3(x-6)(x-2)
\end{aligned}
$$

where, and,

$$
x=6, \quad{ }^{\text {and }}, \quad x=2
$$

Excellent!'

The critical numbers are 6 and 2
2. Find the x coordinates of any inflection points) of $f(x)=x^{3}-12 x^{2}+36 x$.
infection
concavity chang gi
w

$$
\begin{array}{ll}
\text { I } f(x)=x^{3}-12 x^{2}+36 x & \text { int } f^{\prime \prime}(x) \\
f^{\prime \prime}(x)=3 x^{2}-24 x+36 & -2,9 \mid- \\
\text { II } f^{\prime \prime}(x)=6 x-24 & \left.4_{1} 8\right)^{-}+ \\
\hline \frac{0=6 x-24}{x} y & \begin{array}{ll}
6 x=24 & \text { Great } \\
\frac{y}{3}-12(4)^{2}+3(4) & y=16
\end{array}
\end{array}
$$

3. Find the most general antiderivatives of the the following functions:
(a) $f(x)=x^{n}$

$$
\vec{F}(x)=\frac{1}{n+1} \cdot x^{n+1}+C
$$

(b) $f(x)=\sin x$

$$
F(x)=-\cos x+C
$$

(c) $f(x)=e^{x}$

$$
F(x)=e^{x}+C
$$

(d) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$

$$
F(x)=\arcsin x+C
$$

(e) $f(x)=\frac{1}{x}$

$$
F(x)=\ln |x|+C
$$

4. Let $f(x)=x^{2}-4 x+3$. Find the absolute maximum and absolute minimum values of f on $[0,5]$.

$$
\begin{aligned}
& \begin{array}{ll}
f^{\prime}(x)=2 x-4 & =0 \\
2(x-2) & =0
\end{array} \quad x-1=0 \\
& f(0)=3 \\
& x-2 \\
& f(2)=-1 \rightarrow \text { minimum } \\
& \text { is maximum } \\
& \wedge f(5)=8
\end{aligned}
$$

5. Let $f(x)=6 x-2 x^{3}$. Find the largest possible interval(s) where f is decreasing.

$$
\begin{array}{r}
f^{\prime}(x)=6-6 x^{2} \\
0=6\left(1-x^{2}\right) \\
x^{2}=1 \\
x= \pm 1
\end{array}
$$

internals $\quad f^{\prime}(x)$

The largest possible intervals where f is decreasing are $(-\infty,-1) \&(1, \infty)$
6. [Stewart] A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

$$
\begin{aligned}
& 2400=y+x+x . \begin{array}{l}
A \\
2400=y+2 x \\
2400-2 x=y \\
\hline A
\end{array} \\
& \begin{array}{ll}
A=x \cdot(2400-2 x) \\
A & =2400 x-2 x^{2}
\end{array} \\
& \frac{A^{\prime}}{6}=2400-4 x \\
&-\frac{2400}{-4}=\frac{-4 x}{x} \\
& 600=x \\
& 2400=y+600+600 \\
&-1200 \\
& 1200=y
\end{aligned}
$$

Great Job!
7. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "OMG! Why do they make it so confusing? I get the slopes parts, you know? But then they have this cavity part, which makes no sense because that's teeth, right? But so somehow the cavity tells you a max instead of a min or something, right? What's up with that?"

Help Bunny by explaining as clearly as you can how concavity connects to maxes and ming.
OMG!! Don worry Bunny, I have a dentist friend who has taken cali, he can help. The concavity is related to how the slope is changing. If the slope is negative but getting less negative, then you would be uprouching a point that will be the lowest of an urea. This ats works inversly with makes.
concave up graph

Excellent.
8. Let $y=\frac{1}{2} x-\sin x$. Find the exact coordinates of the lowest point on this graph in the interval $[0,2 \pi]$.

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2}-\cos x \\
0 & =\frac{1}{2}-\cos x \\
\cos x & =\frac{1}{2} \\
x & =\cos ^{-1} \frac{1}{2}=\frac{\pi}{3} \\
\text { And when } x=\frac{\pi}{3}, y & =\frac{1}{2}\left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{3}\right) \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{2}
\end{aligned}
$$

so $\left(\frac{\pi}{3}, \frac{\pi}{6}-\frac{\sqrt{3}}{2}\right)$ is the lowest point

$$
\approx(1.047,-0.342) \text { is pretty close }
$$

9. Rectangular storage bins are to be made with square bases and open tops. The volume of each bin is to be 1 cubic meter. What dimensions use the least (in terms of square meters) amount of material?

10. [Anton] Suppose that the population of oxygen-dependant bacteria in a pond is modled by the equation

$$
P(t)=\frac{60}{5+7 e^{-t}}
$$

where $P(t)$ is the population (in billions) t days after an initial observation at time $t=0$. What can you say about when the population is at a maximum?

$$
\begin{aligned}
& P^{\prime}(t)=\frac{0 \cdot\left(5+7 e^{-t}\right)-60 \cdot-7 e^{-t}}{\left(5+7 e^{-t}\right)^{2}} \\
& 0=\frac{420 e^{-t}}{\left(5+7 e^{-t}\right)^{2}} \\
& 0=420 e^{-t} \text {. This is never trace! } \\
& \text { There are no places where } \\
& \text { the population is a maximum! }
\end{aligned}
$$

