This is a fake quiz, this is only a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is only a fake quiz.

1. Let $f(x)=x^{3}-9 x+6$.
(a) Find the largest intervals on which f is increasing. $(-\infty,-\sqrt{3})$ and $(\sqrt{3}, \infty)$
(b) Find the largest intervals on which f is decreasing. $(-\sqrt{3}, \sqrt{3})$
(c) Find the largest intervals on which f is concave up. $(0, \infty)$
(d) Find the largest intervals on which f is concave down. $(-\infty, 0)$
(e) Find the coordinates of all local maximum points of f. $(-\sqrt{3}, 6 \sqrt{3}+6)$
(f) Find the coordinates of all local minimum points of f. $(\sqrt{3}, 6-6 \sqrt{3})$
2. Let $f(x)=\sqrt{x^{2}+3 x}-x$.
(a) Find the largest intervals on which f is increasing. $(0, \infty)$
(b) Find the largest intervals on which f is decreasing. $(-\infty,-3)$
(c) Find the largest intervals on which f is concave up. never!
(d) Find the largest intervals on which f is concave down. $(-\infty,-3)$ and $(0, \infty)$
(e) Find the coordinates of all local maximum points of $f .(-3,3)$
(f) Find the coordinates of all local minimum points of $f .(0,0)$
