Funsheet 1Calc 110/13/22

Each problem is worth 0 points... this time...

1. Use the following table of values for f(x) and g(x) to find values for the following:

x	1	2	3	4	5	6
f(x)	6	3	5	1	4	2
g(x)	2	1	6	3	5	4
f'(x)	2	4	1	5	7	8
g'(x)	5	9	7	11	2	12

(a) If $h(x) = f(x) \cdot g(x)$, what is h'(1) and why?

(b) If $h(x) = \frac{f(x)}{g(x)}$, what is h'(2) and why?

- (c) If h(x) = f(g(x)), what is h'(3) and why?
- (d) If $h(x) = (g(x))^2$, what is h'(4) and why?
- (e) If $h(x) = f(x^2)$, what is h'(2) and why?
- 2. Each side of a square is increasing at a rate of 6 cm / s. At what rate is the area of the square increasing when the area of the square is 16 cm^3 ?
- 3. Use a local linearization for $f(x) = x^4$ at x = 2 to approximate $(2.001)^4$.
- 4. Use a local linearization for $f(x) = x^4$ at x = 2 to approximate $(2.002)^4$.
- 5. Use a local linearization for $f(x) = x^4$ at x = 2 to approximate $(2.003)^4$.
- 6. Use a local linearization for $f(x) = x^4$ at x = 2 to approximate $(2.004)^4$.
- 7. Use a local linearization for $f(x) = x^4$ at x = 2 to approximate $(2.005)^4$.
- 8. How accurate is each of your approximations? Is there a pattern?

- 9. Find an equation for the line tangent to $y = \sqrt[5]{x}$ at the point (0,0).
- 10. Find equations of the lines tangent to $x + y = (x y)^2$ at the points (0, 1) and (1, 0).
- 11. Find equations of the lines tangent to $x + y = (x y)^2$ at the points (0, 1) and (1, 0). Is there a pattern?

