Funsheet 1

Calc 1
10/13/22
Each problem is worth 0 points... this time...

1. Use the following table of values for $f(x)$ and $g(x)$ to find values for the following:

x	1	2	3	4	5	6
$f(x)$	6	3	5	1	4	2
$g(x)$	2	1	6	3	5	4
$f^{\prime}(x)$	2	4	1	5	7	8
$g^{\prime}(x)$	5	9	7	11	2	12

(a) If $h(x)=f(x) \cdot g(x)$, what is $h^{\prime}(1)$ and why?
(b) If $h(x)=\frac{f(x)}{g(x)}$, what is $h^{\prime}(2)$ and why?
(c) If $h(x)=f(g(x))$, what is $h^{\prime}(3)$ and why?
(d) If $h(x)=(g(x))^{2}$, what is $h^{\prime}(4)$ and why?
(e) If $h(x)=f\left(x^{2}\right)$, what is $h^{\prime}(2)$ and why?
2. Each side of a square is increasing at a rate of $6 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing when the area of the square is $16 \mathrm{~cm}^{3}$?
3. Use a local linearization for $f(x)=x^{4}$ at $x=2$ to approximate $(2.001)^{4}$.
4. Use a local linearization for $f(x)=x^{4}$ at $x=2$ to approximate $(2.002)^{4}$.
5. Use a local linearization for $f(x)=x^{4}$ at $x=2$ to approximate $(2.003)^{4}$.
6. Use a local linearization for $f(x)=x^{4}$ at $x=2$ to approximate $(2.004)^{4}$.
7. Use a local linearization for $f(x)=x^{4}$ at $x=2$ to approximate $(2.005)^{4}$.
8. How accurate is each of your approximations? Is there a pattern?
9. Find an equation for the line tangent to $y=\sqrt[5]{x}$ at the point $(0,0)$.
10. Find equations of the lines tangent to $x+y=(x-y)^{2}$ at the points $(0,1)$ and $(1,0)$.
11. Find equations of the lines tangent to $x+y=(x-y)^{2}$ at the points $(3,1)$ and $(1,3)$. Is there a pattern?

