Funsheet $2 \quad$ Calculus 1

Each problem is worth 0 points... this time...

1. Show why the derivative of $\ln x$ is what it is.
(Research first if you need, but run your attempt by Jon for feedback!)
Fall 2021 Exam 3 \#5 is a great place to look.
2. Let $f(x)=x \ln x-x$. Find $f^{\prime}(x)$ in the most simplified form you can manage. $f^{\prime}(x)=\ln x$.
3. Let $f(x)=\ln \left(x+\sqrt{9+x^{2}}\right)$. Find $f^{\prime}(x)$ in the most simplified form you can manage. $\frac{1}{\sqrt{9+x^{2}}}$
4. Let $f(x)=\ln (\sin x)$. Find $f^{\prime}(x)$ in the most simplified form you can manage.

$$
f^{\prime}(x)=\frac{\cos x}{\sin x}=\cot x
$$

5. Find a function of the form $f(x)=A b^{x}$ passing through the points $(1,20)$ and $(2,25)$. $f(x)=16 \cdot\left(\frac{5}{4}\right)^{x}$
6. (a) Find a function of the form $f(x)=A b^{x}$ passing through the points $(0,361)$ and $(10,439)$. $f(x)=361 \cdot\left(\frac{439}{361}\right)^{x}$ or $f(x) \approx 361 \cdot 1.019754738^{x}$
(b) Use your function from part (a) to find $\mathrm{f}(20)$. Compare your result with the data in \#6 of §3.4. ≈ 533.8531852, so not bad compared to 548 .
7. [Stewart] A sample of tritium-3 decayed to 94.5% of its original amount after a year.
(a) What is the half-life of tritium- 3 ? $\ln (0.5) / \ln (0.945) \approx 12.25283496$
(b) How long would it take the sample to decay to 20% of its original amount? $\ln (0.2) / \ln (0.945) \approx 28.45020174$
8. [Stewart] A freshly brewed cup of coffee has temperature $95^{\circ} \mathrm{C}$ in a $20^{\circ} \mathrm{C}$ room. When its temperature is $70^{\circ} \mathrm{C}$, it is cooling at a rate of $1^{\circ} \mathrm{C}$ per minute. When does this occur? after ≈ 20.27 minutes
