Each problem is worth 5 points. Keep your answers correct to the nearest thousandth.

1. If you use a left-hand sum with $n=3$ equal subdivisions to approximate $\int_{1}^{4} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& \sum_{i=1}^{3} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

2. If you use a right-hand sum with $n=3$ equal subdivisions to approximate $\int_{1}^{4} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& \sum_{i=1}^{3} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

3. If you use a midpoint sum with $n=4$ equal subdivisions to approximate $\int_{1}^{3} \ln x d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& c_{4}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& f\left(c_{4}\right)= \\
& \sum_{i=1}^{4} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

4. If you use a midpoint sum with $n=5$ equal subdivisions to approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& c_{1}= \\
& c_{2}= \\
& c_{3}= \\
& c_{4}= \\
& c_{5}= \\
& f\left(c_{1}\right)= \\
& f\left(c_{2}\right)= \\
& f\left(c_{3}\right)= \\
& f\left(c_{4}\right)= \\
& f\left(c_{5}\right)= \\
& \sum_{i=1}^{5} f\left(c_{i}\right) \cdot \Delta x=
\end{aligned}
$$

