Exam 3 Calc $3 \quad 11 / 29 / 22$

Each problem is worth 10 points. For full credit provide good justification for your answers.

1. Give a parametrization and bounds for t to produce a counterclockwise circle with radius 75 centered at the origin.
2. Is the vector field $\mathbf{F}(x, y)=\left\langle x y^{2}, x+y^{2}\right\rangle$ conservative? How can you be sure?
3. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=5 \mathbf{i}+3 x \mathbf{j}$ and C is a path composed of a line segment from $(0,0)$ to $(2,0)$ followed by a line segment from $(2,0)$ to $(0,1)$ and then a line segment from $(0,1)$ back to $(0,0)$.
4. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=2 x y^{3} \mathbf{i}+3 x^{2} y^{2} \mathbf{j}$ and C is a line segment from $(1,1)$ to $(2,3)$.
5. Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=2 x \mathbf{i}+5 y \mathbf{j}+3 z \mathbf{k}$. Let S be the sphere with radius 3, centered at the origin and oriented outward. Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
6. Show that for any vector field $\mathbf{F}(x, y, z)$ whose component functions have continuous partial derivatives, $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$. Make it clear how the requirement that the partials be continuous is important.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Crap. This line integral stuff is crazy. There's all these different ways, and at first I thought I'd just do them all the first way they showed us, so I kinda ignored a couple of days, but then it get pretty hard. They were saying something yesterday about a super-shortcut, where like, if the vector field was the right kind then for any closed path the answer is automatically zero. I like that, but what is it about the vector field that tells you when that happens?"

Help Biff by explaining as clearly as you can when you can tell that a line integral on any closed path has to come out to zero, and how you know.
8. Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=\langle x, y, 1\rangle$. Let S be the cylinder $x^{2}+y^{2}=4$ between $z=0$ and $z=5$. Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
9. Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=\left\langle x z, y^{2},-x^{3}\right\rangle$. Let S be the portion of the paraboloid $z=x^{2}+y^{2}$ below $z=4$ with upward orientation. Find $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
10. Let $\mathbf{F}(x, y)=\langle 1,0\rangle$, and let C be the top half of a circle with some radius r centered at the origin, traversed counterclockwise from $(r, 0)$ to $(-r, 0)$. For what radius r will $\int_{C} \mathbf{F} \cdot d \mathbf{r}=5$?

Extra Credit (5 points possible): Show that if $f(x, y, z)$ is a scalar function and $\mathbf{G}(x, y, z)$ is a vector field, then

$$
\operatorname{div}(f \mathbf{G})=f \operatorname{div} \mathbf{G}+\mathbf{G} \cdot \nabla f
$$

