Exam 2 Calc 2 2/20/2004

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. **Set up** an integral for the area of the first-quadrant portion of a circle centered at the origin with a radius of 5.

2. Jon is considering a big investment in black-market software distribution. He thinks the investment will pay \$5000 per year initially, but drop off linearly to \$0 after 2 years. **Set up an integral** that gives a fair price to pay for this investment today (as an alternative to investing the money at 6% continuously compounded interest)?

3. A spring with natural length 40cm requires 5N of force to hold it stretched to a length of 50cm. **How much work** is done in stretching the spring from natural length to a length of 60cm?

4. Suppose that the probability density function for the failure of the airbag system in Jon's car after *t* months is given by $p(t) = ce^{-ct}$ for values of *t* greater than zero (and by zero otherwise).

(a) If the probability of failure within the first month is 40%, **find the value** of *c* to two decimal places.

(b) **Write an integral** which expresses the probability of the airbag system failing within the first 6 months.

5. A thin metal rod 5 inches long has density given by $d(x) = \sqrt{4+x}$ at a point x inches from its left end. Set up an integral and use it to find the mass of the rod.

6. Bunny is a calculus student at Factory State University, and she's having some trouble. Bunny says "This is a disaster! I'm so totally gonna fail calculus, and Daddy's gonna take away my clothes allowance! Every time I think I've got it, it turns out I'm totally wrong. There was this problem on the test about finding the volume of the top six inches of a sphere with radius 12 inches, right? So I said easy, I know the formula for the volume of the whole sphere, and I'll just divide that by 4 to get the top quarter of it, right? But they gave me no credit at all for it. How am I gonna buy those new shoes?"

Explain clearly to Bunny why what she did does or doesn't work, and how she should think about the problem.

7. Set up an integral for the arc length of the curve y = 1/x from the point (2, $\frac{1}{2}$) to the point (5, $\frac{1}{5}$).

8. Jon has a piece of cardboard cut in the shape of the region between $x = 9 - y^2$ and the y axis. Set up integrals and use them to **find** \overline{x} , the x coordinate of the center of mass of the cardboard.

9. A spherical tank with a radius of 4 feet is buried so that its top is 6 feet underground. If the tank is full of water (with a density of 62.4 pounds per cubic foot), **write an integral** for the amount of work required to pump half the water up to the surface.

10. Evaluate
$$\int_{0}^{1} \ln x \, dx$$
.

1

Extra Credit (5 points possible): The surface obtained by rotating the region between y = 1/x and the x axis to the right of x = 1 around the x axis is called *Gabriel's Horn*.

(a) Set up an integral for the volume of Gabriel's Horn and evaluate it to find its volume.

(b) The integral $2p \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^2} dx$ gives the surface area of the solid obtained by

revolving the region between f(x) and the x axis between x = a and x = b around the x axis. Find the surface area of Gabriel's Horn.