Exam 4b Calc 2 4/23/2004

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Determine whether $y=3 e^{-2 t}$ is a solution to the differential equation $\frac{d^{2} y}{d t^{2}}=9 y$.
2. Find a general solution to the differential equation $\frac{d y}{d x}+x y^{3}=0$.
3. Which of the differential equations could have the slope field pictured at right?
a) $\frac{d p}{d t}=0.2 p$
b) $\frac{d p}{d t}=-0.2 p$
c) $\frac{d p}{d t}=0.2 p+20$

d) $\frac{d p}{d t}=0.2 p-10$
e) $\frac{d p}{d t}=0.2 p(50-p)$
4. Find a general solution for the differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
5. Find all equilibrium points of the system

$$
\begin{aligned}
& \frac{d x}{d t}=x-x^{2}-\frac{x y}{3} \\
& \frac{d y}{d t}=y-y^{2}-\frac{x y}{2}
\end{aligned}
$$

6. Suppose a 70° kumquat is placed in an oven that begins at 70° but which heats linearly to 350° over the next 10 minutes. Write a differential equation for the temperature of the kumquat after t minutes (use 0.0673 for k) and use Euler's method with $\Delta t=5$ minutes to estimate the temperature (correct to 2 decimal places) of the kumquat at the end of 10 minutes.
7. Bunny is having trouble with differential equations. She says "Ohmygod! It's so totally unfair! I mean, I can do math okay when they give the directions right, you know? But now they totally just don't tell us what to do, and I'm lost. They said to pick a suitable kind of differential equation for how many people have cable modems in their houses and use it, but that's so wrong, because how am I supposed to know? I mean, when they say something's proportional to something I can do that, but how am I supposed to know what's proportional to cable modems?"

Suggest to Bunny what sort of model might be appropriate for this situation, and why.
8. Lake Erie has a volume of $460,000 \mathrm{~km}^{3}$ and an outflow rate of $175 \mathrm{~km}^{3}$ per year. Suppose that 20 kg of a certain pollutant is present in the lake at time 0 . How long (to the nearest year) will it be until only 5 kg remain?
9. Suppose that the population of carp in a certain river grows logistically with a carrying capacity of 8000 fish, and that when there are 6000 fish in the river the population grows at a rate of 480 fish per year. How many fish can safely be harvested from the river without causing extinction?
10. The differential equation $y^{\prime \prime}+4 y=3 \cos 5 t$ isn't quite the sort where we can use our standard characteristic polynomial strategy, but it's close. Suppose that there's a solution of the form $y=a \cos 5 t$ for some value of the constant a, and see if you can find a workable value for a.

Extra Credit (5 points possible): Try to find a solution $y(t)$ of the differential equation $y^{\prime \prime}-t y^{\prime}-2 y=0$.

