Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).

Each problem is worth 5 points. For full credit provide complete justification for your answers.

1. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=\ln (x+1)$.
b) Use the polynomials from part a) to approximate $\ln 1.6, \ln 2$, and $\ln 2.3$.
2. a) Find the radius and interval of convergence of the Taylor series for $\ln (x+1)$.
b) Explain what your answer in part a) says about the accuracy of the values you found in 1. b).
3. a) Use derivatives to find the Taylor polynomials of degree 6 and 7 for the function $\mathrm{f}(x)=e^{x}$ centered at $\mathrm{x}=1$.
b) Use the polynomials from part a) to approximate $e^{1.6}, e^{2}$, and $e^{2.3}$.
4. a) Find the radius and interval of convergence of the Taylor series for e^{x}.
b) Explain what your answer in part a) says about the accuracy of the values you found in 3. b).
