Each problem is worth 5 points. For full credit provide proper justification for your answer.

1. Find a solution to the differential equation $\frac{dm}{dt} = 100 - 0.3m$ subject to the initial condition that

$$m(0) = 400$$
. $\frac{dm}{dt} = 100 - 0.3m$
 $o_1 \int \frac{1}{100 - 0.3m} \int \frac{dt}{dt} = \frac{t}{100 - 0.3m} \int \frac{t}{100 -$

$$m(0) = 400$$
.
 $400 = 100 - Ae^{-0.3 \times 0}$
 0.3
 0.3
 $0.1 = 100 - Ae^{0}$
 $0.1 = 100 - 120$
 $0.1 = -20$
Hence, the $100 = 120$
 $0.1 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$
 $100 = -20$

2. Lake Superior has a volume of approximately 12.2 thousand km³, and an outflow rate of roughly 65.2 km³ per year. Write a differential equation that models the quantity Q of some pollutant in the lake over time.

$$\frac{dQ}{dt} = \frac{-65.2}{12200} \cdot Q$$

$$\frac{Q}{12200}$$
 is the proportion of the total water that's polluted, and there are 65.2 km^3 like polluted, and there are 65.2 km^3 like that leaving, hence the negative.