Exam 2 Differential Equations 3/5/04

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Verify that $y=e^{2 t}, v=2 e^{2 t}$ is a solution to the system of equations $\frac{d v}{d t}=-6 y+5 v$ $\frac{d y}{d t}=\quad v$
2. State the definition of the Laplace transform of a function $y(t)$.
3. Suppose that the populations of rabbits and ferrets are governed by the differential equations $\frac{d R}{d t}=2 R-1.2 R F$ $\frac{d F}{d t}=-F+1.2 R F$
both populations are measured in thousands), use Euler's method with step size $\Delta t=0.5$ to find the missing value from the table below (do not round).

\mathbf{t}	\mathbf{R}	\mathbf{F}
$\mathbf{0}$	2	1
$\mathbf{. 5}$	2.8	1.7
$\mathbf{1}$	2.744	

4. Find all equilibrium points of the system

$$
\begin{aligned}
& \frac{d x}{d t}=5 x\left(1-\frac{x}{5}\right)-x y \\
& \frac{d y}{d t}=3 y\left(1-\frac{y}{3}\right)-2 x y
\end{aligned}
$$

5. Convert the differential equation $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-12 y=0$ to a system of two first order differential equations.
6. Find a solution to the differential equation $y+y^{\prime}=3 x^{2}+2 x$ by assuming there is a second degree polynomial solution.
7. Prove that $L\left[\frac{d y}{d t}\right]=s L[y]-y(0)$.
8. Find a general solution to the system $\begin{array}{ll}\frac{d x}{d t} & =-2 x+y \\ \frac{d y}{d t} & =\quad 3 y\end{array}$.
9. Find a solution to the differential equation $y^{\prime \prime}-4 y=2 e^{3 t}$ by assuming there is a solution of the form $y=A e^{3 t}$.
10. a) Find a general solution to the differential equation $y^{\prime \prime}-4 y=0$.
b) Find a solution to the differential equation $y^{\prime \prime}-4 y=2 e^{3 t}$ satisfying the initial condition $y(0)=5$ [This takes some insight, but think about how your answers to 9 . and 10. a) can be combined].
