Exam 3 Differential Equations 4/9/04

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Give an example of eigenvalues that would produce a saddle at the origin.
2. If you know that a planar system has eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=0$, with corresponding eigenvectors $\mathbf{v}_{1}=\binom{1}{-2}$ and $\mathbf{v}_{2}=\binom{3}{5}$, write a general solution for the system.
3. Which of the phase planes shown below could correspond to a planar system with eigenvalues $\lambda_{1}=$ $2+i$ and $\lambda_{2}=2-i$?

$$
\begin{aligned}
& \frac{d x}{d t}=-2 x+y \\
& \frac{d y}{d t}=3 y
\end{aligned}
$$

5. The planar system $\frac{d x}{d t}=2 x-3 y$

$$
\frac{d y}{d t}=3 x+2 y
$$

eigenvectors $\mathbf{v}_{1}=\binom{1}{-i}$ and $\mathbf{v}_{2}=\binom{1}{i}$. Write a general solution to this system in a form not involving imaginary exponents.
6. For which values of the constant b will the system of differential equations $\begin{aligned} \frac{d x}{d t} & =2 x+b y \\ \frac{d y}{d t} & =4 x+6 y\end{aligned}$ have solutions involving sine and cosine?
7. Find a particular solution to the planar system $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}-2 & -1 \\ 1 & -4\end{array}\right) \mathbf{Y}$ which satisfies the initial condition $\mathbf{Y}_{0}=(1,0)$.
8. Suppose that the planar system $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}-0.2 & 0.1 \\ 0.0 & -0.1\end{array}\right) \mathbf{Y}$ represents the populations of two species of fish, creatively labeled as "species X " and "species Y ", where $\mathrm{x}(\mathrm{t})$ actually gives the number of fish of species X in a pond above or below the natural equilibrium population and $y(t)$ gives the number of fish of species Y present in the pond.

The eigenvalues of the system are $\lambda_{1}=-0.2$ and $\lambda_{2}=-0.1$, with associated eigenvectors $\mathbf{V}_{1}=\binom{1}{0}$ and $\mathbf{V}_{2}=\binom{1}{1}$.
(a) Does the presence of fish of species Y benefit or hurt the population of species X ?
(b) If all the fish of species Y are exterminated, what will happen to species X ?
(c) If a small number of fish of species Y are introduced, with species X beginning at equilibrium, what will happen?
9. Convert the second-order differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ to a system of first-order equations and find the equation in λ whose roots are the eigenvalues of the system.
10. Jon is trying to make up a problem for a differential equations test. He wants a planar system with eigenvalues 2 and 3 , with respective eigenvectors $\binom{1}{3}$ and $\binom{0}{1}$. He knows that you can make a matrix with desired eigenvalues by putting the eigenvalues you want as entries on the main diagonal of the coefficient matrix with a zero in one of the other spots, but what coefficient matrix does he need in order to have his desired eigenvectors?

