Each problem is worth zero points, but there is a chance you’ll learn some math.

1. A force of 8 pounds is required to hold a spring stretched 6 inches beyond its natural length. How much work is done in stretching it from 6 inches to 12 inches beyond its natural length?

2. A spring has a natural length of 10cm. If 5N of force are required to hold it stretched to a length of 12cm, how much work is required to stretch it from natural length to 15cm?

3. Suppose that 6J of work are required to hold a spring stretched to a length of 60cm rather than its natural length of 50cm. How much work is required to stretch it from 50cm to 80cm?

4. If 10 foot-pounds of work stretches a spring from its natural length of 8 inches to a length of 12 inches, how much force is required to hold it stretched to that 12 inch length?

5. If 3N of force holds a spring stretched to a length of 20cm and 5N of force holds it stretched to a length of 25cm, how much work is required to stretch it from 20cm to 25cm?

6. If a spring requires 30 foot-pounds of work to stretch from a natural length of 24 inches to 30 inches, how far will 15 foot-pounds of work stretch it?

7. Generalize problem 6: If \(n \) foot-pounds of work stretch a spring from natural length to \(f \) feet beyond natural length, how far will \(n/2 \) foot-pounds of work stretch it?