Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_0^\infty y(t)e^{-st} \, dt \]

1. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

3. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

4. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

5. Show that \(\mathcal{L} \left(\frac{dy}{dt} \right) = s \mathcal{L}(y) - y(0) \).

6. Find \(\mathcal{L}(\cos \omega t) \).

7. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_0^\infty y(t)e^{-st} \, dt \]

\(\frac{1}{4} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{1}{2} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{1}{2} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L} \left(\frac{dy}{dt} \right) = s \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L} (\cos \omega t) \).

4. Find \(\mathcal{L} (\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_0^\infty y(t)e^{-st} \, dt \]

1/4. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

1/2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

1/2. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_0^\infty y(t)e^{-st} \, dt \]

\(\frac{\sqrt{2}}{4} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{\sqrt{2}}{4} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{\sqrt{2}}{4} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s\mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_0^\infty y(t)e^{-st} \, dt \]

1.4. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

1/2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

1/2. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

\(\frac{1}{4} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{1}{2} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{3}{2} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s\, \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_0^\infty y(t)e^{-st} \, dt \]

\(\frac{1}{4} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{1}{2} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{3}{2} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt} \right) = s \cdot \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

\(½ \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{1}{2} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{3}{2} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s \cdot \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

\(\mathcal{L} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\mathcal{L} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\mathcal{L} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt} \right) = s \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group
submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you
reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t) e^{-st} dt \]

\[\frac{1}{4} \] Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\[\frac{1}{2} \] Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\[\frac{1}{2} \] Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} dt \]

1/4. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

1/2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

1/2. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt} \right) = s \cdot \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

\(\frac{1}{4} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{1}{2} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{1}{2} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt} \right) = s \cdot \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L} \)(cos \(\omega t \)).

4. Find \(\mathcal{L} \)(sin \(\omega t \)).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

1/2. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

1/2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

1/2. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L} \left(\frac{dy}{dt} \right) = s \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

$L(y(t)) = \int_{0}^{\infty} y(t)e^{-st} dt$

4. Let $y(t) = 1$. Find $L(y(t))$.

$\frac{1}{2}$. Let $y(t) = e^{3t}$. Find $L(y(t))$ for $s > 3$. Why does the restriction matter?

1. Let $y(t) = e^{at}$. Find $L(y(t))$ for $s > a$. Why does the restriction matter?

$\frac{1}{2}$. Let $y(t) = 1$. Find $L(y(t))$ again, this time cleverly using your result from problem 1.

2. Show that $L\left(\frac{dy}{dt}\right) = sL(y) - y(0)$.

3. Find $L(\cos \omega t)$.

4. Find $L(\sin \omega t)$.
You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[L(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

1. Let \(y(t) = 1 \). Find \(L(y(t)) \).

1/2. Let \(y(t) = e^{3t} \). Find \(L(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(L(y(t)) \) for \(s > a \). Why does the restriction matter?

1/2. Let \(y(t) = 1 \). Find \(L(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(L \left(\frac{dy}{dt} \right) = s \cdot L(y) - y(0) \).

3. Find \(L(\cos \omega t) \).

4. Find \(L(\sin \omega t) \).
You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t) e^{-st} \, dt \]

1. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

3. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

4. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

5. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s \mathcal{L}(y) - y(0) \).

6. Find \(\mathcal{L}(\cos \omega t) \).

7. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

1/4. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

1/2. Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

1/2. Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L}\left(\frac{dy}{dt}\right) = s\mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).
Problem Set 3 Differential Equations Due 3/13/06

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each natural numbered problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

\[\mathcal{L}(y(t)) = \int_{0}^{\infty} y(t)e^{-st} \, dt \]

1\(^{\text{st}}\) Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \).

\(\frac{1}{2} \). Let \(y(t) = e^{3t} \). Find \(\mathcal{L}(y(t)) \) for \(s > 3 \). Why does the restriction matter?

1. Let \(y(t) = e^{at} \). Find \(\mathcal{L}(y(t)) \) for \(s > a \). Why does the restriction matter?

\(\frac{1}{2} \). Let \(y(t) = 1 \). Find \(\mathcal{L}(y(t)) \) again, this time cleverly using your result from problem 1.

2. Show that \(\mathcal{L} \left(\frac{dy}{dt} \right) = s \cdot \mathcal{L}(y) - y(0) \).

3. Find \(\mathcal{L}(\cos \omega t) \).

4. Find \(\mathcal{L}(\sin \omega t) \).