$$\frac{d^2y}{dt^2} + n^2y = 0.$$

The solutions of this constant-coefficient equation are linear combinations of $\sin nt$ and $\cos nt$. The Hermite polynomials share many properties with the functions $\sin nt$ and cos nt, and both families of functions appear frequently in applications. Legendre's equation, another equation with similar properties, is studied in Exercise 15.

EXERCISES FOR APPENDIX B

In Exercises 1-4, use the guess-and-test method to find the power series expansion centered at t = 0 for the general solution up to degree four, that is, up to and including the t^4 term. (You may find the general solution using other methods and then find the Taylor series centered at t = 0 to check your computation if you like.)

1.
$$\frac{dy}{dt} = y$$
 2. $\frac{dy}{d2} = -y + 1$

$$2. \frac{dy}{d2} = -y +$$

3.
$$\frac{dy}{dt} = -2ty$$
 4. $\frac{dy}{dt} = t^2y + 1$

$$4. \frac{dy}{dt} = t^2y + 1$$

In Exercise 5-8, find the power series expansion for the general solution up to degree four, that is, up to and including the t^4 term.

5.
$$\frac{dy}{dt} = -y + e^{2t}$$

6.
$$\frac{dy}{dt} = 2y + \sin t$$

7.
$$\frac{d^2y}{dt^2} + 2y = \cos t$$

8.
$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + y = \sin 2t$$

9. Verify that
$$y(t) = \tan t$$
 is a solution of

$$\frac{dy}{dt} = y^2 + 1,$$

and compute a power series solution to find the terms up to degree six (up to and including the t^6 term) of the Taylor series centered at t = 0 of $\tan t$.

In Exercises 10-13, find the general solution up to degree six, that is, up to and including the t^6 term.

$$10. \frac{d^2y}{dt^2} + 2y = 0$$

$$11. \frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 0$$

$$12. \frac{d^2y}{dt^2} + \frac{dy}{dt} + t^2y = \cos t$$

13.
$$\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = e^{-2t}$$

Hints and Answers for Appendix B **1.** The Taylor series centered at t = 0 for $y(t) = ke^t$.

3. The Taylor series centered at
$$t = 0$$
 for $y(t) = ke^{-t^2}$.

5.
$$y(t) = a_0 + (-a_0 + 1)t + (a_0/2 + 1/2)t^2 +$$

 $(-a_0/6 + 1/2)t^3 + (a_0/24 + 5/24)t^4 + \dots$

7.
$$y(t) = a_0 + a_1 t + (1/2 - a_0) t^2 - (a_1/3) t^3 + (a_0/6 - 1/8) t^4 + \dots$$

9.
$$\tan t = t + t^3/3 + 2t^5/15 + \dots$$

11. $y(t) = a_0 + a_1 t + (-a_0/2 - a_1/2) t^2 + (a_0/6) t^3 +$ $+(a_1/24)t^4 + (-a_0/120 - a_1/120)t^5 +$ $(a_0/720)t^6 + \dots$

$$+(a_1/24)t^4 + (-a_0/120 - a_1/120)t^5 + (a_0/720)t^6 + \dots$$
13. $y(t) = a_0 + a_1t + (1/2 - a_0/2)t^2 + (-1/3 - a_1/3)t^3 + (1/24 + a_0/8)t^4 + \dots$

 $(a_1/15)t^5 + (11/720 - a_0/48)t^6 + \dots$

 $a_3 = \frac{2 - \nu(\nu + 1)}{2} a_1,$

15. (a) $a_2 = -\frac{v(v+1)}{2}a_0$,

$$a_4 = -\frac{6 - \nu(\nu + 1)}{12} \frac{\nu(\nu + 1)}{2} a_0$$
(b) *Hint*: Note that a_{2n} has a_0 as a factor and a_{2n+1}

has a_1 as a factor. Also note that if $\nu = n$ is a positive integer, then $a_{n+2} = 0$. (c) *Hint*: Use the formulas from part (a).

(d)
$$P_3(t) = t - \frac{5}{3}t^3$$
,

$$P_4(t) = 1 - 10t^2 + \frac{35}{3}t^4,$$

$$P_5(t) = t - \frac{14}{3}t^3 + \frac{21}{5}t^5,$$

$$P_5(t) = t - \frac{14}{3}t^3 + \frac{21}{5}t^5,$$

$$P_6(t) = 1 - 21t^2 + 63t^4 - \frac{231}{5}t^6$$

(e) *Hint*: Use linearity.
17.
$$v(t) = t - t^2 + t^3/2 - t^4/6 + \dots$$