Exam 3 Calc 2 4/3/2009

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. a) Write out the first three terms in the sequence $\left\{\frac{1}{n^{2}}\right\}$.
b) Find the first three partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
2. Find the sum of the series $6-2+2 / 3-2 / 9+\ldots$
3. For what values of r does the function $y=e^{r x}$ satisfy the differential equation $2 y^{\prime \prime}+y^{\prime}-y=0$?
4. Sketch a good graph of the equation $\frac{x^{2}}{25}+\frac{(y-3)^{2}}{9}=1$.
5. Find an equation for the line tangent to the curve with parametric equations $x(t)=t^{4}+1, y(t)=t^{3}+$ t at the point where $t=-2$.
6. Suppose that an 80° cup of very bad soy half-decaf latte is left sitting in a 20° room because nobody wants to drink it, and that initially the liquid cools at a rate of 1° each minute. Use Euler's Method with a step size of 5 to approximate the temperature of the latte after 10 minutes.
7. Bunny is a calculus student at Enormous State University, and she has a question. Bunny says "Ohmygod, this is so amazing. I was reading in our Calculus book, like it's the same one you use, right? And there was this example where they, like, showed that the circumference of a circle with radius 1 is 4 p instead of 2 p ! That's so amazing! I thought from Geometry in high school that it was always $2 p$ times the radius, but I didn't know it could be different if you wrote the equation for the circle this parametric way. So, like, I wonder how many other circumferences that circle can have if you take even more math classes?"

Help Bunny by explaining what's going on.
8. Suppose that the performance, $P(t)$, of students given a length of time t to learn material is modeled by the differential equation $\frac{d P}{d t}=k(M-P)$ where M and k are positive constants. Find a solution $P(t)$ to this differential equation. What happens to $P(t)$ over the long run?
9. The graphs of $r=2+\sin 2$? and $r=2+\cos 2$? are shown below. Set up an integral (or integrals) for the area of the region inside both curves.

10. The curve with parametric equations $x(t)=2 \cos t, y(t)=\sin 2 t$ is shown below. Find the area bounded by this curve. [Hint: It may be useful to use the trig identity $\sin 2 x=2 \sin x \cos x$.]

Suppose a sequence is defined by letting $a_{1}=0$ and then $a_{n+1}=\sqrt{1+a_{n}}$. Will it converge? How do you know?

