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Preliminaries

A few initid agreements are necessary before the redl work of this class can begin. First, we need to
have some common terminology. The following collections of numbers should be reasonably familiar to
you, but the sandard symbols for them might not be, S0 we summarize here:

Definition: We use the symbol N for the set of natural numbers, the collection {0, 1, 2, ...}

Some texts use N for the set of postive natura numbers, thus excluding 0. 'Y ou might find this
ambiguity troubling, but in practice it sdldom causes much difficulty. Asyou will eventualy see, there
are some compelling reasons for preferring the version we use here.

Definition: We use the symbol Z for the set of integers, the callection{...,-2,-1,0, 1, 2, ...},
including dl of the naturd numbers and their negatives.

The reasonsfor usng the letter “Z” rather than “1” are partly higtoricd (it arises from “zahlen,” the
German word for numbers) and dso to avoid the confusion possble since words like “imaginary” dso
dart with the letter “17.

Definition: We use the symbol @ for the set of rational numbers, numbers of the form% forp, q
€ Zwithq = 0.

The choice of the letter “Q” stems from the word “quotient”. The symbal “€” which first appeared here
means “is an eement of” or in this context with two variables preceding it “are dements of.” We will
congder the proper handling of this (and severd other symbols) in the near future, but for now arough
understanding should serve you well enough.

“Definition”: We usethe symbol R for the set of real numbers, aset which includes al of those
previousy mentioned along with many others. These can be thought of as corresponding to
every possible point on anumber line.

Y ou might find thislast “definition” to be of a different character than those that came before, even
without the clue of the quotation marks. In fact agreat ded is presumed in Sating it thisway. Whether
acollection of objects exists with the properties you' ve been led to expect from the real numbersis
actualy avery complicated question, and only parts of that question belong in this class (with most or
al of the other parts held off until aRed Andysisdass). The point you should be clear on for now is
that there are difficult questions associated with this set of numbers you' ve probably been led to take
for granted. Thisclasswill (except where otherwise noted) provisondly accept that such matters can
be satisfactorily dedlt with, and focus on specific considerations that will eventualy lead to a complete
sysem.

Definition: Andement x € R isirrational iff X ¢ Q.
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Thereis no common symboal for theirrationas. Note the abbreviation “iff” which first appeared hereis
ashorthand for “if and only if.” We'll examine this much more closdy in the near future, but for now
recognize it to mean that any time we say ared number X isirrationa, we mean it is not arationa
number, and vice versa any time we say ared number x isnot rationd, we dso meanitisirraiond.
That might seem to be belaboring the point right now, but thinking clearly about such stuaionsis
vauable and becomes more difficult as the satements we deal with grow more complicated.
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Parity

Definition: Cdll an integer m even iff it isequd to 2n for some integer n.
Definition: Cdl an integer m odd iff it isequd to 2n + 1 for someinteger n.

Exercises 1

Unless otherwise stated, m, n, p, g, r, and s represent integers, and X, y, and z rea numbers.
1. If niseven, then n? iseven.

2. If nisodd, then n?is odd.

3. Ifnisodd and miseven, then n + misodd.

4. If nand mareodd, then n- misodd.

5. If n?iseven, then niseven.

6. The cube of an even number is even.

7. The cube of an odd number is odd.

8. The product of any two consecutive integersis even.
9. The sum of any two consecutive integersis odd.

10. The sum of any two non-consecutive integersis even.
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Beyond Parity

Definition: Cdl an integer m threveniff it isequd to 3n for somen € Z.
Definition: Cal an integer m throdd iff it isequd to 3n + 1 for somen € Z.
Definition: Cdl an integer m throddodd iff it isequd to 3n + 2 for somen € Z.

Exercises 2

8.

0.

The sum of two threven integersis threven.

The sum of two throdd integersis throddodd.

The sum of athrodd and a throddodd integer is threven.

The product of athreven integer with athrodd integer is threven.
The product of any three consecutive integersis threven.

The square of athreven integer is threven.

The square of athrodd integer isthrodd.

The square of athroddodd integer is throdd.

There is no integer whose square is throddodd.

10. Thereisno integer which is both threven and throdd.

1/11/11
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Divisbility

Definition: Let a be an integer. Iff aninteger misequa to an for someinteger n, thenwe say a
divides m, which is sometimes denoted by ajm.

Exercises 3

=

7 divides 14.

2. 7 divides 100.

3. If 2dividesn and 3 dividesm, then 5 dividesn + m.
4. If 2dividesn and 3 divides m, then 6 dividesn - m.
5. If pdividesg and q dividesr, then p dividesr.

6. If pdividesqand p dividesr, then p dividesq + .
7. If pdividesr and g dividesr, then p - g dividesr.

8. If nisthe product of any four consecutive integers, then 24 divides n.
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Modular Arithmetic
There are obvious pardlels between the ideas of even and odd and the threven, throdd, and throddodd
presented previoudy. The point of this section isto extend those pardlesin the naturd way. Thisturns
out to be much more useful than might be immediately apparent.

Definition: Wewritea =, biff n | (b —a).

Note: We read the above notation as “a is congruent modulo nto b” or “ais congruent to b
modulo n.”

Exer cises

1. Find somevauesfor b suchthat 0 =, b.
2. Find somevduesfor b suchthat 1 =, b.
3. Find somevduesfor b suchthat 2 =, b.
4. Find somevduesfor b suchthat 0 =5 b.
5. Find somevauesfor b suchthat 1 =5 b.
6. Find somevduesfor b suchthat 2 =5 b.
7. Find somevduesfor b suchthat 3=5b.
8. Find somevduesfor b suchthat 0 =, b.
9. Find somevduesfor b suchthat 1 =, b.
10.Ifa=,0andb=,0,thena+b =, 0.
11.Ifa=,1landb=,1thena+b=,2
12.Ifa=,0andb=,c,thena-b=,0.
13.Ifa=,b,thena+n=_bh.

14. a

na.
15.Ifa=,b,thenb =, a

16.Ifa=,bandb=,c,thena=,c.
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Warm-up for Mathematical Logic

Saementslike “If it rains, | carry an umbreld’ and “If afunctionis differentidble a x = a, theniitis
continuous a X = a” obvioudy share some common underlying structure. This section isafirgt attempt
to expose that structure and develop some terminology for discussing it.

Definition: A statement of theform P = Qiscdled an implication.

Y ou might note that the exact nature of the “P” and “Q’ here is somewhat vague. For instance,
replacing the P with “A poem” and the Q with “P/4” is strange and presumably troublesome, whereas
replacing the P with “rain” and the Q with “I carry and umbrella’ seems more reasonable. This course
will not attempt the mgjor task of sorting out the exact bounds of which statements are gppropriate for
this sort of use, but if used judicioudy what’ s presented here should equip you for most normal
mathematical needs.

Definition: Given agatement P = Q, wesay Q = P isthe conver se of the origind Satement.

For example, for the statement “If afunction isdifferentiable & x = a, thenitiscontinuous a x = a,” the
converse would be “If afunction is continuous a x = a, then it is differentisble at x = a.” Y ou should
be able to recognize from basic Caculus that this demongrates that the converse of atrue Statement is
not necessarily true.

Definition: The negation of a statement P, which we will denote by -P (or sometimes ~P, whichis
easer from acomputer keyboard) the negation of this statement, a statement which has
precisaly the opposite truth values under dl circumstances.

For example, the negation of the statement “1 am carrying an umbrella’ would be“1 am not carrying an
umbrella”

Definition: Given a gatement P = Q, we say the statement -Q = —P isthe contrapositive of the
origind dtatemen.

For example, the contragpositive of the statement “If afunction is differentiable at x = a, thenitis
continuous a X = &’ would be “If afunction is not continuous a x = a, then it is not differentisble & x =
a.” You might find dl of this unreasonably awvkward, but the significance will be made more dear in the
next section. For the moment it might be worth noting that the contrapogtive of the statement “If nisan
integer for which n? is odd, then n is odd” would be (provided that we can say an integer which is not
odd must be even) “If aninteger n iseven, then n? iseven.”

Definition: Given agatement P = Q, we say the statement =P = =Q isthe inver se of the origind
satement.

For example, theinverse of the statement “If nisan odd integer greater than 1, then n is prime” would
be“If nisnaot prime, then n is not an odd integer greater than 1.” 'Y ou should have immediate doubts
about the vdidity of this asaform of reasoning.
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Truth Tables

Based on the definition of anegation is the previous section, it should be clear that when astatement is
true then its negation will befdse. Similarly when the statement itsdlf isfasg, its negation will be true.
We can summarize thiswith whet is cdled atruth table

P

EX

T

F
Fl T

Many mathematica Statements assert that at least one of two possibilitiesistrue, for example “n is even
or nisodd.” We will sometimes use the symbol “Vv” to denote this. The truth table for thisis

Pl QI PVQ

n
.
g
g

nm o4 4 -

N
.
.
.

It isimportant to note that the common English use of the word “or” has sgnificant ambiguity: In the
sentence “We could go to amovie or go shopping” most people would take the choices to be
exclusve. On the other hand, in a sentence like “Y ou have to have alot of money or know the right
people to get away with that,” presumably someone who both had alot of money and knew the right
people would be able to get away with whatever was under discussion. Context and very subtle
phrasings often digtinguish between these two meanings of the word. Mathematicians carefully limit the
use of theword “or” to the sense indicated by the truth table above, where it could be that both parts
aretrue. When needed, a separate “exclusive or” connector can be used for the sense where both
parts cannot be true, dthough we will not have further use for that in this course.

There are dso many Stuations when we need to assert that two things are both true, for ingtance “If nis
an integer that is even and greater than 2...” The truth table for this connector is

Pl QlPAQ
T|T| T
T|F| F
FIT| F
FIF| F
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Thus the combined statement is true exactly when both parts are true.

We have dready taken for granted the meaning of an implication statement like“P = Q,” but it is
important to recognize exactly how the truth table corresponding to this works out

PIQ| P-Q
T T T
TIF| F
FlT| T
FIF| T

The last two rows of this often surprise sudents. To understand it, consder the statement “If it rains, |
cary awarus” If you hear someone say this, and then saw them walking on arainy day and in fact
carrying awarus, this would be consstent with their statement (hence the second line on the table end
with true). However, if instead you observe them walking on arainy day without awarus, you would
recognize that what they said was fase (hence the third line on the table ending in falsg). Now think
about the fourth line: if thefirgt part of their Satement isfalse (S0 it’s not arainy day) but the second
part istrue (so they’re carrying awarus), you wouldn't be able to cdl them aliar — they only asserted
that they carry awalrus under certain circumstances, not that they never do otherwise. That’swhy the
fourth line ends with true. And findly, if you see that person waking on asunny day and not carrying a
warus, it certainly wouldn't contradict their claim about what they do on rainy days, so the last lineon
thetable endsin fdse. It isonly when the hypothess of an implication is satisfied but the concluson is
not that the implication has been invaidated.

Findly, there are many times when mathematicians wish two assart that two conditions are
interchangeable, 0 that whenever one holds the other will dso. The truth table for thisis

PlQlP-Q
T T T
TIF| F
FIT| F
FIF| T

Thus the truth table for this connector, usudly called a*“biconditiond,” is true when both satements
have the same truth value, either both true or both fase. Thisis the technica meaning behind the “iff”
abbreviation for “if and only if” that has been used severd times dready in this text.

Definition: Two statements are said to be logicdly equivaent iff they have the same truth values
under al circumstances.

This definition is very significant, but thisis best understood by seeing how it plays out in practice.

10
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According to the definition, we must consider every possible collection of circumstances, but that just
means al possible combination of true and fase for the components P and Q, which correspondsto dl
of the linesin truth tables like the ones liged so far.. The following Theorem gives some indication of
this

Theorem 1: The atements“P = Q" and “-P V Q" arelogicdly equivaent.

Proof: We congtruct the following truth table

* *
P Q P-Q -P ~PV Q
T T T F T
T F F F F
F T T T T
F F T T T

Since the two columns marked with %’ s match, the two statements have the same truth vaues under dl
circumgances and thus are logicdly equivdent. O

Exer cises

1. ThegaementsP and — - P arelogicdly equivaent.

2. Thegatements— (P V Q) and - P A\ = Q arelogicaly equivdlent. [DeMorgan’s Law]
3. Thegdatements— (P A Q) and - P \V = Q arelogicaly equivaent. [DeMorgan’s Law]
4. A staement and its contrapostive are logicaly equivaent. [Most important of al!]

5. A daement’s converse and inverse are logicaly equivaent.

6. A datement and its converse are logicaly equivaent.

7. Thesaements(P A Q) A Rand P A (Q A\ R) arelogicdly equivaent.

8. Thegsatements(PV Q) V Rand PV (QV R) arelogicdly equivaent.

9. Thedaements(PV Q) A Rand (P A R)V (Q A R) aelogicaly equivaent.

10. Thegatements(P A Q) V Rand (P V R) A (QV R) arelogicaly equivaent.

11. ThestatementsP = (QV Ryand (P = Q) V (P = R) arelogicdly equivdent.

12. The tatements (P A Q) = Rand (P = R) /A (Q = R) arelogically equivaent.

11




Foundations of Advanced Mathematics  Jonathan J. White Verson 0.2  1/11/11
Quantification

Congder the statements “There is no real number whose square is negative,” and “Every red number
squares to be non-negative.” It should be apparent that they’ re asserting the same basic thing, yet one
says something can’t hgppen while the other says something always happens. The point of this section
isto clarify the essentids of such connections.

We will use the symbal “v” as a shorthand meaning “for al.” Itiscaled auniversal quantifier. Thus
the claim from the last paragraph can be expressed Vx € R, x? > 0. This meanstha every possible x
chosen from the set of red numberswill satisfy the daim x? > 0.

On the other hand we will use the symbol “3” as a shorthand meaning “there exigs.” Itiscdled an
existential quantifier. Using this, the claim from the first paragraph can be expressed - 3 x € R, x?
<0.

The connection between these two different forms can intuitively be seen in the fact that if there does
not exist any ingance where something isfase, then it must in dl indances betrue. Vice verss, if
something is never true, it must dways befdse. Formaly,

sVXeAPKX) =3IxeA -P(X)

sJdxeA PX)=VxeA -P(X)

Exercises

Determine whether each of the following is true (proofs aren’t needed), and when appropriate name the
property.

1. VXeZ —xeZ.

2. VXeZ)(VyeD),x+yeb.
3. VxeR)@yed,x+y=0.
4. VxeZ)(VyeDy,x y=1
5. @xeR)(VyeR),x-y=0.
6. (VxeN)@yeN),x+y=0.
7. (VxeR)@yeR),x - y=1
8 (VxeZ)(3Byed,x-y=0.

9. @xeL)(VyeD,x-y=0.

12
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Proof Techniques. Contradiction

By now you should have quite a bit of practical experience providing convincing arguments for why
things are true, or demondtrating clearly when they are not. However, this and the next few sections
will atempt to make you more conscioudy aware of what's involved in demongtrating certain sorts of
datements. Asthe difficulty of the materid you work with grows, a greater recognition of the
fundamentas will beincreasingly vduable.

The essence of a proof by contradiction is supposing the negation of the statement you wish to prove,
and showing that the supposition leads to some impaossible conclusion. Classically such an gpproach
was cdled reductio ad absurdum, literdly “reduction to the absurd.” Some instances are very smple,
and others much more complex, but it is essentid to have it very clearly in your mind as you proceed
that the god is to reach a contradiction.

Propogition 1: Thereis no greatest natura number.

Proof: Wéll, suppose that there were a greatest natural number, and cdll it n. But then by the closure of
the natural numbers under addition, we know n + 1isaso anatura number. And since0< 1, and
adding n to both sdestellsusn < n + 1, we see that n isnot in fact the greatest naturd number,
contradicting our supposition and leaving us to conclude that there is no grestest natura number. O

Proposition 2: JE isirrationd.

Proof: Well, suppose it were rationd, so that there were integers p and g such that P = «/E , and if
q

necessary reduce the fraction so that p and g have no common factors. Then squaring both sides gives
2

P~ _ o : _ : : . : :
? = 2, and multiplying by o? gives p? = 2g?. We recognize that the right-hand side of this equation

is even, so by aprevious result since p isan integer for which p? is even, we know p mugt itsalf be even.
Then thereis an integer r for which p = 2r, and subgtituting in our previous equation we have (2r)? =
202, or 4r? = 202, or 2r2 = 2. But this means g must also be even, contradicting our supposition that

we could write \/E asaraiond number. O

Exercises

=

Thereis no positive red number which is closest to O.

N

If X isirrationd, then 2x isirrationdl.

3. «/§ isirraiond.

>

Use a proof by contradiction to show that an integer n cannot be both even and odd.

5. Thereareinfinitdy many prime numbers

14
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If x isrationd and y isirrationd, then X + y isirrationd.
The sum of two irrationa numbersisirrationd.
The square root of an irrationad number isirrationd.

There are no integers x and y for which x? = 3y + 5.

Verson 0.2

1/11/11

10. If &, b, and ¢ areintegers for which a + b? = ¢, then a least one of a or b must be even.

15
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Proof Techniques: Induction

There is one particularly unusud gpproach to demondtrating the truth of statements. In generd settings,
the term “inductive reasoning” refersto a process of drawing genera conclusions from specific
instances — for example, deciding that atraffic light stays green for 30 seconds because you' ve
observed it to do so many times, or deciding that gravity obeys an inverse-square relaionship because
numerous observations have been made that agree with such arule. The drawback to this sort of
goproach is that we seldom know patterns will continue (the timing on the traffic light might sometime
be adjusted) and observations are seldom precise beyond al doubt (hence the trangition from
Newtonian to Eingeinian physics). Mahematicians desire aleve of certainty that goes beyond frequent
observation.

The Principle of Mathematica Induction is our answer to dl of this. It isbased on avery careful form
of reasoning and the Well-Ordering Principle, which by itsdlf probably appears rather obvious but less
then useful:

Wdl-Ordering Principle: Any non-empty set of natural numbers has aleast eement.
Based on this, we gate the Principle itsdlf:

Principle of Mathematical Induction: Suppose that some proposition P(n) holds true when n = 0, and
aso that whenever P(K) istrue, P(k + 1) isdso true. Then Pmust betruefor al n e N.

Proof: Well, suppose that we have satisfied the hypotheses of the statement, but that there are some
vauesof n for which the conclusion does not hold. Then by the Well-Ordering Principle, there must be
asmalest natura number for which the statement falsto be true — let’s call that dement m. But then m
—1isasmdler natura number, so it must be one for which P((m —1) istrue. That means, taking k = m
— 1 in the Induction condition, we must so know that P(k + 1) istrue—but k + 1 would be (m—1) +
1 =m, so P(m) must betrue. This contradicts our supposition that there were natura numbers for
which the statement failed to hold, so we conclude that the statement holds true for dl naturad numbers.
Ll

In practica terms, it's probably best to get used to the idea of mathematical induction through examples
and practice — fully understanding why it sworking will Snk in with alittletime. The rough idea of “If
you can get onto the first rung of aladder, and if being able to get to some rung of aladder guarantees
you can make it to the next rung on the ladder, then there’ s no rung you can't get to eventudly” isa
good guide for most people as they get used to this. We Il begin with an example where we could
draw the conclusion by other means, just as awarm-up.

Proposition 1: The product of any two consecutive naturd numbersis even.
Proof: Well, let’s proceed by induction to prove that the statement “n timesn + 1iseven” holds for all
natural numbers n. Suppose that thefirst integer is 1, sothesecondis2. Then1x2=2=2(1)is

even snceit's 2 times an integer.

Now s pose the statement istrue for k, so that k(k + 1) = 2m for some integer m, and we need to

16
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show that k + 1 timesk + 2 iseven. But

k+)k+2) =k*+3k+2
= (k2 +Kk) + (2k + 2)
=2m+2(k +1) [by our inductive hypothesis]
=2(m+k +1).

Sosncem+ n+ lisaninteger, we seethat (k + 1)(k + 2) iseven. Then since the statement has been
shown true for n = 1, and since whenever the satement istruefor nitisaso truefor n + 1, we can
conclude by mathematica induction that the satement holds true for dl natura numbersn. G

It’'s perfectly acceptable to abbreviate the entire passage in gray aove as “ So by induction the
satement holdsfor dl naturd numbersn. G”

For our next example we |l need a definition:
Definition: If C isaset of red numbers, we say b isan upper bound for C iff (vxeC) b > x.

Proposition 2: Any collection of exactly n digtinct real numbers (where nisanaturd number) has an
upper bound.

Proof: Wdll, let’s proceed by induction. Let C be a collection with just one red number init, and cdll
that number x. Then x itsdf isan upper bound for C, since (VyeC) x > y.

Now s pose C isacollection with exactly two digtinct rea numbersinit, and cal them x andy. Then
ether x > yory > x. Inthefirst case x will be an upper bound for C, sncex > x and x > y, and
amilarly in the second casey is an upper bound for C.

Findly, suppose that any collection with exactly k digtinct red numbersin it has an upper bound, and let
D beacallection with exactly k + 1 real numbers. Let’sfirg create anew collection C by taking al of
the dements of D except one (label as a that dement of D which was omitted from C). Then we know
by our inductive hypothesis that C has an upper bound, cdl itb. Theneithera > bor b > a. Thusby
the trangitive property in the first case a is an upper bound for D, and in the second case b is. So by
induction, we ve shown that any collection of exactly n digtinct real numbers has an upper bound. G

It should be noted that there are a couple of standard variations on the Induction we' ve described here.
The smplest possibility isto use abase case other than n = 0; in fact any sarting vaue for n can work
to prove that a proposition holds for vaues of n from that vaue up. Another dterndive is sometimes
described as “ strong induction” and involves an inductive step where truth of the statement for naturd
number vaues of n up through k, rather than just for k itsdf, asin the following example.

Definition: A naturd number n > 1 isprime iff it isdivisble by no postive naturd number other than
1 and itsdlf.

Proposition 3 (part of The Fundamenta Theorem of Arithmetic): Every naturd n > lisprimeor a
product of primes.

17
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Proof: Wdl, we |l proceed by induction, adthough the statement doesn’t directly apply to O or 1 (though
it'svacuoudy true for those vadues). We Il gart then with n = 2, which satisfies the satement Snceiit is
prime. We then take as our inductive hypothesis “ All natural numbers less than or equd to k satisfy the
gatement that every naturd n > 1isprime or aproduct of primes.” Our job isto show that the truth of
this statement for some k assuresitstruth for k + 1. There are two possihilities; either k + 1Lisitsdf
prime (in which case our statement istrue) or it isnot, in which caseit isdivisble by someother a € N,
and we canwritek + 1 =a - b for someb € N. But then a and b must both belessthan k + 1, so our
inductive hypothess assures they both are either prime or a product of primes, and that gives us our
desired expression of k + 1 itsef asaproduct of primes. [J

Exercises

1. Useinduction to show that for any n € N, n? + niseven.
2. FordlneN,2">n.

3. m<2'fordlneN,n> 4.

4. FordlneN,nl > 2" 1

5. Theproduct of n odd integersisodd for any n > 1.

6. Supposex > —1. Then(1+x)">1+nxforn=> 0.

7. Sdividesn®—n.

8. Any naturd number is either even or odd.

n
9. Forany ne N,withn > 1, é c=nc.
i=1
. ¢ . _nn+d
10. Forany ne N,withn>1, g | = >
i=1

n
11. Forany n € N,withn > 1, é (2i-1)=n°.
i=1

_ ¢ ., _n(n+1)(2n+1)
12. Foranyne N,withn>1, g 1" = 6 )
i=1

_1 _ n
13. Forany ne N,withn > 1, 5 ax’ =201 forp ..

i=0 - T

18
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n

0 1
14. Conjecture aformulafor T
iazl i(i+1)

Proof Techniques: Cases

and verify it by induction.

Another approach to proving certain sort of statementsis an argument by cases. Thisapproach is
reasonably commonsense most of the time, but deserves some emphasis because it can be useful at
times when you might not expect it. A few examples should suffice.

Proposition 1: Vn € N, n? + niseven.

Proof: Well, let's consider two cases. Firgt, n might itsdf be even. Then we have previoudy shown
that the square of an even number is even, and that the sum of two even numbersiseven, son? + n
must be even. Next consider the other case, where n itsdf isodd. We know from previous results that
the square of an odd number is odd, and that the sum of two odd numbersis even, so again n + nis
even. We dso know from an exercise in the previous section that these are the only possible cases, so
we conclude that for dl naturad numbers n, n? + n must be even. [J

It isimportant to note thet the last sentence is saying something significant. Just dedling with afew of
the possible cases, or just showing that the conclusion holds in one case, does not suffice any more than
asingle example proves a generd proposition. Being conscious of this can help avoid some pitfdls.
Propogtion 2: Vx € R, |x| > O.

Proof: Wdll, every red number is either positive, negative, or zero. The absolute value of 0is0, and O
> 0. If x were dready positive, then the absolute vaue of x isjust the same, so we still have [x| > 0.

Fndly, if x itsdf were negative, then its absolute value is positive, so we dill have [x| > 0. Soindl
possible cases the desired result holds, as desired. [

Exercises
1. VneN,n?=;00rn?=,1.

2. VXeR,x*>0.

ix-1 forx32 .
3. WwxeR, f(X)=j iS non-negative.
13- x forx<2
i x? 3
4 wxeR g =% %0 dterentioble
10 forx<O
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Assorted Exercises

8.

0.

If n + 1litemsare distributed so that each goesinto exactly one of n sets, then at least one of the
sets must contain more than 1 item. [Pigeonhole Principle]

The sum of two rationa numbersisrationd.

The sum of two irrationa numbersisirrationd.

The product of two rationd numbersisrationd.

The product of two irrationa numbersisirraiond.

Anirrationa to an irrationa power can berationa

Between any two integers there is another integer.

Between any two rationa numbers there is another rationa number.

Between any two irrationa numbers there is an irrational number.

10. Every even integer greeter than 2 can be written as a sum of two prime numbers. [Goldbach]

11. For any integer n, the number n? + n + 17 is prime.

12. For any prime number n, 2" — 1 isprime.
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