EXERCISES FOR APPENDIX B

In Exercises $1-4$, use the guess-and-test method to find the power series expansioncentered at $t=0$ for the general solution up to degree four, that is, up to and including the t^{4} term. (You may find the general solution using other methods and then find the Taylor series centered at $t=0$ to check your computation if you like.)

1. $\frac{d y}{d t}=y$
2. $\frac{d y}{d 2}=-y+1$
3. $\frac{d y}{d t}=-2 t y$
4. $\frac{d y}{d t}=t^{2} y+1$

In Exercise 5-8, find the power series expansion for the general solution up to degree four, that is, up to and including the t^{4} term.
5. $\frac{d y}{d t}=-y+e^{2 t}$
6. $\frac{d y}{d t}=2 y+\sin t$
7. $\frac{d^{2} y}{d t^{2}}+2 y=\cos t$
8. $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+y=\sin 2 t$
9. Verify that $y(t)=\tan t$ is a solution of

$$
\frac{d y}{d t}=y^{2}+1
$$

and compute a power series solution to find the terms up to degree six (up to and including the t^{6} term) of the Taylor series centered at $t=0$ of $\tan t$.

In Exercises 10-13, find the general solution up to degree six, that is, up to and includ. ing the t^{6} term.
10. $\frac{d^{2} y}{d t^{2}}+2 y=0$
11. $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=0$
12. $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+t^{2} y=\cos t$
13. $\frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{-2 t}$

Hints and Answers for Appendix B

1. The Taylor series centered at $t=0$ for $y(t)=k e^{t}$.
2. The Taylor series centered at $t=0$ for $y(t)=k e^{-t^{2}}$.
3. $y(t)=a_{0}+\left(-a_{0}+1\right) t+\left(a_{0} / 2+1 / 2\right) t^{2}+$ $\left(-a_{0} / 6+1 / 2\right) t^{3}+\left(a_{0} / 24+5 / 24\right) t^{4}+\ldots$
4. $y(t)=a_{0}+a_{1} t+\left(1 / 2-a_{0}\right) t^{2}-$ $\left(a_{1} / 3\right) t^{3}+\left(a_{0} / 6-1 / 8\right) t^{4}+\ldots$
5. $\tan t=t+t^{3} / 3+2 t^{5} / 15+\ldots$
6. $y(t)=a_{0}+a_{1} t+\left(-a_{0} / 2-a_{1} / 2\right) t^{2}+\left(a_{0} / 6\right) t^{3}+$ $+\left(a_{1} / 24\right) t^{4}+\left(-a_{0} / 120-a_{1} / 120\right) t^{5}+$ $\left(a_{0} / 720\right) t^{6}+\ldots$
7. $y(t)=a_{0}+a_{1} t+\left(1 / 2-a_{0} / 2\right) t^{2}+$

$$
\begin{aligned}
& \left(-1 / 3-a_{1} / 3\right) t^{3}+\left(1 / 24+a_{0} / 8\right) t^{4}+ \\
& \left(a_{1} / 15\right) t^{5}+\left(11 / 720-a_{0} / 48\right) t^{6}+\ldots
\end{aligned}
$$

15. (a) $a_{2}=-\frac{\nu(\nu+1)}{2} a_{0}$,

$$
\begin{aligned}
& a_{3}=\frac{2-v(v+1)}{2} a_{1}, \\
& a_{4}=-\frac{6-v(v+1)}{12} \frac{v(v+1)}{2} a_{0}
\end{aligned}
$$

(b) Hint: Note that $a_{2 n}$ has a_{0} as a factor and $a_{2 n+1}$ has a_{1} as a factor. Also note that if $v=n$ is a positive integer, then $a_{n+2}=0$.
(c) Hint: Use the formulas from part (a).
(d) $P_{3}(t)=t-\frac{5}{3} t^{3}$,

$$
\begin{aligned}
& P_{4}(t)=1-10 t^{2}+\frac{35}{3} t^{4} \\
& P_{5}(t)=t-\frac{14}{3} t^{3}+\frac{21}{5} t^{5} \\
& P_{6}(t)=1-21 t^{2}+63 t^{4}-\frac{231}{5} t^{6}
\end{aligned}
$$

(e) Hint: Use linearity.
17. $y\left(t_{t}\right)=t-t^{2}+t^{3} / 2-t^{4} / 6+\ldots$

