Exam 2a Differential Equations 3/16/12

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Find a solution to the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x \\
& \frac{d y}{d t}=\quad 3 y
\end{aligned}
$$

2. Give an example of a partially decoupled system of differential equations.
3. Find all equilibrium points of the system

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-1.2 R F \\
& \frac{d F}{d t}=-F+0.9 R F
\end{aligned}
$$

4. Suppose that you know $x(t)=k_{2} e^{2 t}-\frac{k_{1}}{3} e^{-t}, y(t)=k_{1} e^{-t}$ is a general solution to a system of differential equations. Find the solution satisfying the initial condition $\mathbf{Y}(0)=(x(0), y(0))$ $=(2,1)$.
$\frac{d R}{d t}=2 R-1.2 R F$
5. Consider the system \quad. Let $R(0)=2$ and $F(0)=1.5$, and use Euler's $\frac{d F}{d t}=-F+0.9 R F$
method with step size $\Delta t=2$ to approximate $R(2)$ and $F(2)$.
6. Find a general solution to the system $\begin{aligned} & \frac{d x}{d t}=3 x+2 y \\ & \frac{d y}{d t}=5 x\end{aligned}$.
7. Let $y(t)=5$. Find $\alpha[y]$, and note any necessary restrictions.
8. Compute the inverse Laplace transform $\mathcal{L}^{-1}\left[\frac{5}{(s-1)(s-2)}\right]$.
9. Suppose $a \geq 0$. Compute the Laplace transform of the function

$$
r_{a}(t)=\left\{\begin{array}{cc}
0 & \text { if } t<a \\
k(t-a) & \text { if } t \geq a
\end{array} .\right.
$$

10. Consider the second-order differential equation $y^{\prime \prime}+\beta y^{\prime}+12 y=0$.
a) Let $\beta=8$. Find a general solution to the equation.
b) Find a value for the parameter β for which $y(t)=e^{-3 t}$ is a solution to this equation.
