Exam 2 Differential Equations 3/21/14

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Does the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+y \\
& \frac{d y}{d t}=-2 x
\end{aligned}
$$

have $x(t)=e^{2 t}, y(t)=-2 e^{2 t}$ as a solution?
2. State the definition of the Laplace transform for a function $y(t)$ with at most exponential growth.
3. Construct a system of differential equations, with all coefficients representing positive constants, to model the interaction of two populations where:

- The first population would experience logistic growth with carrying capacity K in the absence of the second
- Interaction between the two populations hurts the first population
- The second population would experience exponential decline in the absence of the first
- Interaction between the two populations benefits the second population
- A fixed number of the second population are harvested in each unit of time

4. Consider the system $\frac{d R}{d t}=2\left(1-\frac{R}{3}\right) R-R F$
5. Consider the system

$$
\frac{d F}{d t}=-16 F+4 R F
$$

$\frac{d x}{d t}=x+2 y$

$$
\frac{d y}{d t}=-y
$$

$$
\text { project } x(1) \text { if } x(0)=2 \text { and } y(0)=3 \text {. }
$$

6. What is the Laplace transform of $y(t)=0$?
7. Let $y(t)=5 t$. Compute the Laplace transform of $y(t)$ from the definition.
8. Consider the system $\begin{aligned} \frac{d R}{d t} & =-\frac{1}{2} F+5 R \\ \frac{d F}{d t} & =\quad 8 R \text {. Find a non-trivial solution to this system. }\end{aligned}$
9. Let $y(t)=\left\{\begin{array}{lr}0 & \text { if } t<0 \\ 1 & \text { if } 0 \leq \mathrm{t}<10 \\ 2 & \text { if } 10 \leq \mathrm{t}\end{array}\right.$. What is the Laplace transform of y ?

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x+\beta y \\
& \frac{d y}{d t}=\gamma x+\delta y
\end{aligned}
$$

Is it possible to say whether $(3 x(t), 3 y(t))$ is a solution or not? Be clear about your reasoning.

