Exam 2 Differential Equations 3/21/14

Each problem is worth 10 points. For full credit indicate clearly how you reached your answer.

1. Does the system of differential equations

$$\frac{dx}{dt} = 3x + y$$
$$\frac{dy}{dt} = -2x$$

have $x(t) = e^{2t}$, $y(t) = -2e^{2t}$ as a solution?

2. State the definition of the Laplace transform for a function y(t) with at most exponential growth.

- 3. Construct a system of differential equations, with all coefficients representing positive constants, to model the interaction of two populations where:
 - The first population would experience logistic growth with carrying capacity *K* in the absence of the second
 - Interaction between the two populations hurts the first population
 - The second population would experience exponential decline in the absence of the first
 - Interaction between the two populations benefits the second population
 - A fixed number of the second population are harvested in each unit of time

$$\frac{dR}{dt} = 2\left(1 - \frac{R}{3}\right)R - RF$$

4. Consider the system

$$\frac{dF}{dt} = -16F + 4RF$$

. Find all equilibrium points of this system.

5. Consider the system $\frac{dx}{dt} = x + 2y$ $\frac{dy}{dt} = -y$ project x(1) if x(0) = 2 and y(0) = 3. Use Euler's method with a step size of $\Delta t = 0.5$ to 6. What is the Laplace transform of y(t) = 0?

7. Let y(t) = 5t. Compute the Laplace transform of y(t) from the definition.

8. Consider the system $\frac{\frac{dR}{dt}}{\frac{dF}{dt}} = -\frac{1}{2}F + 5R$. Find a non-trivial solution to this system. $\frac{dF}{dt} = 8R$

9. Let
$$y(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } 0 \le t < 10 \end{cases}$$
. What is the Laplace transform of y?
2 & \text{if } 10 \le t \end{cases}

10. Suppose that (x(t), y(t)) is a solution to the system of differential equations $\frac{dx}{dt} = \alpha x + \beta y$ $\frac{dy}{dt} = \gamma x + \delta y$.

Is it possible to say whether (3x(t), 3y(t)) is a solution or not? Be clear about your reasoning.