
Foundations of Advanced Mathematics, version 0.6

Jonathan J. White

1/9/15



Foundations of Advanced Mathematics, v. 0.6 Jonathan J. White January 9, 2015

2



Chapter 1

Basic Number Theory and Logic

Forward

These notes are intended to provide a solid background for the study of abstract mathe-
matics. You will quickly recognize that they tell you less and ask more of you than many
mathematics books you may have seen in the past. Please understand that this is very
deliberate.

1.1 Preliminaries

A few initial agreements are necessary before the real work of this class can begin. First, we
need to have some common terminology. The following collections of numbers should
be reasonably familiar to you, but the standard symbols for them might not be, so we
summarize here:

Definition: We use the symbolN for the set of natural numbers, the collection {0, 1, 2, ...}

Some texts use N for the set of positive natural numbers, thus excluding 0. You might
find this ambiguity troubling, but in practice it seldom causes much difficulty. As you
will eventually see, there are some compelling reasons for preferring the version we use
here.

Definition: We use the symbol Z for the set of integers, the collection {..., 2, 1, 0, 1, 2, ...},
including all of the natural numbers and their negatives.

The reasons for using the letter ”Z” rather than ”I” are partly historical (it arises from
”zahlen,” the German word for numbers) and also to avoid the confusion possible since
words like ”imaginary” also start with the letter ”I”.

Definition: We use the symbol Q for the set of rational numbers, numbers of the form p
q
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for p, q ∈ Zwith q , 0.

The choice of the letter ”Q” stems from the word ”quotient”. The symbol ”∈” which first
appeared here means ”is an element of” or in this context with two variables preceding it
”are elements of.” We will consider the proper handling of this (and several other sym-
bols) in the near future, but for now a rough understanding should serve you well enough.

”Definition”: We use the symbol R for the set of real numbers, a set which includes
all of those previously mentioned along with many others. These can be thought of as
corresponding to every possible point on a number line.

You might find this last definition to be of a different character than those that came
before, even without the clue of the quotation marks. In fact a great deal is presumed
in stating it this way. Whether a collection of objects exists with the properties you have
been led to expect from the real numbers is actually a very complicated question, and
only parts of that question belong in this class (with most or all of the other parts held off
until a Real Analysis class). The point you should be clear on for now is that there are
difficult questions associated with this set of numbers that you have probably been led to
take for granted. This class will (except where otherwise noted) provisionally accept that
such matters can be satisfactorily dealt with, and focus on specific considerations that will
eventually lead to a complete system.

Definition: An element x ∈ R is irrational iff x < Q.

There is no common symbol for the irrationals. Note the abbreviation ”iff” which first
appeared here is a shorthand for ”if and only if.” We will examine this much more closely
in the near future, but for now recognize it to mean that any time we say a real number
x is irrational, we mean it is not a rational number, and vice versa any time we say a real
number x is not rational, we also mean it is irrational. That might seem to be belaboring
the point right now, but thinking clearly about such situations is valuable and becomes
more difficult as the statements we deal with grow more complicated.

An extremely important property of the preceding sets of numbers is closure. The nat-
ural numbers are closed under addition and multiplication, meaning that if m and n are
natural numbers, then m + n and m · n are also natural numbers. However, the naturals
are not closed under subtraction or division, since, for instance, 3 − 5 and 3 ÷ 5 are not
natural numbers. For most of this course we will take it on faith that the naturals have
these properties. Furthermore the integers are closed under addition, subtraction, and
multiplication. The real numbers are closed under addition, subtraction, multiplication,
and almost under division (think about it). In the final chapter of this text the status of
this property will be revisited and become something significantly different than faith.
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1.2 Parity

Definition: Call an integer m even iff it is equal to 2n for some integer n.
Definition: Call an integer m odd iff it is equal to 2n + 1 for some integer n.

Exercises
1. If n ∈ Z is even, then n2 is even.

2. If n ∈ Z is odd, then n2 is odd.

3. If n ∈ Z is odd and m ∈ Z is even, then n + m is odd.

4. If n,m ∈ Z are odd, then n ·m is odd.

5. If n2
∈ Z is even, then n is even.

6. The cube of an even number is even.

7. The cube of an odd number is odd.

8. The product of any two consecutive integers is even.

9. The sum of any two consecutive integers is odd.

10. The sum of any two non-consecutive integers is even.
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1.3 Beyond Parity

Definition: Call m ∈ Z threven iff m = 3n for some n ∈ Z.
Definition: Call m ∈ Z throdd iff m = 3n + 1 for some n ∈ Z.
Definition: Call m ∈ Z throddodd iff m = 3n + 2 for some n ∈ Z.

Exercises
1. The sum of two threven integers is threven.

2. The sum of two throdd integers is throddodd.

3. The sum of a throdd and a throddodd integer is threven.

4. The product of a threven integer with a throdd integer is threven.

5. The product of any three consecutive integers is threven.

6. The square of a threven integer is threven.

7. The square of a throdd integer is throdd.

8. The square of a throddodd integer is throdd.

9. There is no integer whose square is throddodd.

10. There is no integer which is both threven and throdd.
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1.4 Divisibility

Definition: Let a,m ∈ Z. Iff m = a · n for some n ∈ Z, then we say a divides m, which is
sometimes denoted by a|m.

Exercises
1. 7 divides 14.

2. 7 divides 100.

3. If 2 divides n and 3 divides m, then 5 divides n + m.

4. If 2 divides n and 3 divides m, then 6 divides n ·m.

5. If p divides q and q divides r, then p divides r.

6. If p divides q and p divides r, then p divides q + r.

7. If p divides q and p divides r, then p divides q · r.

8. If p divides r and q divides r, then p · q divides r.

9. If n is the product of any four consecutive integers, then 24 divides n.
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1.5 Modular Arithmetic

There are obvious parallels between the ideas of even and odd and the threven, throdd,
and throddodd presented previously. The point of this section is to extend those parallels
in the natural way. This turns out to be much more useful than might be immediately
apparent.

Definition: We write a ≡n b iff n|(b − a).

Note: We read the above notation as ”a is congruent modulo n to b” or ”a is congru-
ent to b modulo n.”

Exercises
1. Find some values for b such that 0 ≡2 b.

2. Find some values for b such that 1 ≡2 b.

3. Find some values for b such that 2 ≡2 b.

4. Find some values for b such that 0 ≡3 b.

5. Find some values for b such that 1 ≡3 b.

6. Find some values for b such that 2 ≡3 b.

7. Find some values for b such that 3 ≡3 b.

8. Find some values for b such that 0 ≡4 b.

9. Find some values for b such that 1 ≡4 b.

10. If a ≡n 0 and b ≡n 0, then a + b ≡n 0.

11. If a ≡n 1 and b ≡n 1, then a + b ≡n 2.

12. If a ≡n 0 and b ≡n c, then a · b ≡n 0.

13. If a ≡n b, then a + n ≡n b.

14. For any a ∈ Z, a ≡n a.

15. If a ≡n b, then b ≡n a.

16. If a ≡n b and b ≡n c, then a ≡n c.
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1.6 Warm-up for Mathematical Logic

Statements like ”If it rains, I carry an umbrella” and ”If a function is differentiable at
x = a, then it is continuous at x = a” obviously share some common underlying structure.
This section is a first attempt to expose that structure and develop some terminology for
discussing it.

Definition: A statement of the form P⇒ Q is called an implication.

You might note that the exact nature of the ”P” and ”Q” here is somewhat vague. For
instance, replacing the P with ”A poem” and the Q with ”π6 ” is strange and presumably
troublesome, whereas replacing the P with ”rain” and the Q with ”I carry and umbrella”
seems more reasonable. This course will not attempt the major task of sorting out the exact
bounds of which statements are appropriate for this sort of use, but if used judiciously
what is presented here should equip you for most normal mathematical needs.

Definition: Given a statement P ⇒ Q, we say Q ⇒ P is the converse of the original
statement.

For example, for the statement ”If a function is differentiable at x = a, then it is con-
tinuous at x = a,” the converse would be ”If a function is continuous at x = a, then it
is differentiable at x = a.” You should be able to recognize from basic Calculus that this
demonstrates that the converse of a true statement is not necessarily true.

Definition: The negation of a statement P, which we will denote by ¬P (or sometimes ∼ P,
which is easier from a computer keyboard) is the negation of this statement, a statement
which has precisely the opposite truth values under all circumstances.

For example, the negation of the statement ”I am carrying an umbrella” would be ”I
am not carrying an umbrella.”

Definition: Given a statement P ⇒ Q, we say the statement ¬Q ⇒ ¬P is the contra-
positive of the original statement.

For example, the contrapositive of the statement ”If a function is differentiable at x = a,
then it is continuous at x = a” would be ”If a function is not continuous at x = a, then
it is not differentiable at x = a.” You might find all of this unreasonably awkward, but
the significance will be more clear in the next section. For the moment it might be worth
noting that the contrapositive of the statement ”If n is an integer for which n2 is odd, then
n is odd” would be (provided that we can say an integer which is not odd must be even)
”If an integer n is even, then n2 is even.”

Definition: Given a statement P ⇒ Q, we say the statement ¬P ⇒ ¬Q is the inverse
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of the original statement.

For example, the inverse of the statement ”If I carry an umbrella, it will rain” is ”If I
do not carry an umbrella, then it will not rain.” You should have immediate doubts about
the validity of this as a form of reasoning.
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1.7 Truth Tables

Based on the definition of a negation in the previous section, it should be clear that when
a statement is true then its negation will be false. Similarly when the statement itself is
false, its negation will be true. We can summarize this with what is called a truth table:

P ¬P
T F
F T

Many mathematical statements assert that at least one of two possibilities is true, for
example ”n is even or n is odd.” We will sometimes use the symbol ”∨” to denote this.
The truth table for this is:

P Q P ∨Q
T T T
T F T
F T T
F F F

It is important to note that the common English use of the word ”or” has significant ambi-
guity: In the sentence ”We could go to a movie or go shopping” most people would take
the choices to be exclusive. On the other hand, in a sentence like ”You have to have a lot of
money or know the right people to get away with that,” presumably someone who both
had a lot of money and knew the right people would be able to get away with whatever
was under discussion. Context and very subtle phrasings often distinguish between these
two meanings of the word. Mathematicians carefully limit the use of the word ”or” to the
sense indicated by the truth table above, where it could be that both parts are true. When
needed, a separate ”exclusive or” connector can be used for the sense where both parts
cannot be true, although we will not have further need for that in this course.

There are also many situations when we need to assert that two things are both true,
for instance ”If n is an integer that is even and greater than 2...” The truth table for this
connector is:

P Q P ∧Q
T T T
T F F
F T F
F F F

Thus the combined statement is true exactly when both parts are true.

We have already taken for granted the meaning of an implication statement like ”P⇒ Q”,
but it is important to recognize exactly how the truth table corresponding to this works
out:
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P Q P⇒ Q
T T T
T F F
F T T
F F T

The last two rows of this often surprise students. To understand it, consider the statement
”If it rains, I carry a walrus.” If you hear someone say this, and then saw them walking on
a rainy day and in fact carrying a walrus, this would be consistent with their statement
(hence the second line on the table ends with true). However, if instead you observe them
walking on a rainy day without a walrus, you would recognize that what they said was
false (hence the third line on the table ending in false). Now think about the fourth line:
if the first part of their statement is false (so it is not a rainy day) but the second part
is true (so they are carrying a walrus), you wouldn’t be able to call them a liar — they
only asserted that they carry a walrus under certain circumstances, not that they never do
otherwise. That is why the fourth line ends with true. And finally, if you see that person
walking on a sunny day and not carrying a walrus, it certainly would not contradict their
claim about what they do on rainy days, so the last line on the table ends in true. It is
only when the hypothesis of an implication is satisfied but the conclusion is not that the
implication has been invalidated.

Finally, there are many times when mathematicians wish to assert that two conditions
are interchangeable, so that whenever one holds the other will also. The truth table for
this is:

P Q P⇔ Q
T T T
T F F
F T F
F F T

Thus the truth table for this connector, usually called a ”biconditional,” is true when both
statements have the same truth value, either both true or both false. This is the technical
meaning behind the ”iff” abbreviation for ”if and only if” that has been used several times
already in this text.

Definition: Two statements are said to be logically equivalent iff they have the same
truth values under all circumstances.

This definition is very significant, but this is best understood by seeing how it plays
out in practice. According to the definition, we must consider every possible collection
of circumstances, but that just means all possible combinations of true and false for the
components P and Q, which corresponds to all of the lines in truth tables like the ones
listed so far. The following Theorem gives some indication of this.
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Theorem 1: The statements P⇒ Q and ¬P ∨Q are logically equivalent.

Proof: We construct the following truth table:

? ?
P Q P⇒ Q ¬P ¬P ∨Q
T T T F T
T F F F F
F T T T T
F F T T T

Since the two columns marked with ?’s match, the two statements have the same truth
values under all circumstances and thus are logically equivalent. �

Exercises
1. The statements P and ¬¬P are logically equivalent.

2. The statements ¬(P ∨Q) and ¬P ∧ ¬Q are logically equivalent. [DeMorgan’s Law]

3. The statements ¬(P ∧Q) and ¬P ∨ ¬Q are logically equivalent. [DeMorgan’s Law]

4. A statement and its contrapositive are logically equivalent. [Most important of all!]

5. A statement’s converse and inverse are logically equivalent.

6. A statement and its converse are logically equivalent.

7. The statements (P ∧Q) ∧ R and P ∧ (Q ∧ R) are logically equivalent.

8. The statements (P ∨Q) ∨ R and P ∨ (Q ∨ R) are logically equivalent.

9. The statements (P ∨Q) ∧ R and (P ∧ R) ∨ (Q ∧ R) are logically equivalent.

10. The statements (P ∧Q) ∨ R and (P ∨ R) ∧ (Q ∨ R) are logically equivalent.

11. The statements P⇒ (Q ∨ R) and (P⇒ Q) ∨ (P⇒ R) are logically equivalent.

12. The statements (P ∧Q)⇒ R and (P⇒ R) ∧ (Q⇒ R) are logically equivalent.
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1.8 Quantification

Consider the statements ”There is no real number whose square is negative,” and ”Every
real number squares to be non-negative.” It should be apparent that they’re asserting the
same basic thing, yet one says something can’t happen while the other says something
always happens. The point of this section is to clarify the essentials of such connections.

We will use the symbol ”∀” as a shorthand meaning ”for all.” It is called a universal
quantifier. Thus the claim from the last paragraph can be expressed ∀x ∈ R, x2

≥ 0. This
means that every possible x chosen from the set of real numbers will satisfy the claim x2

≥ 0.

On the other hand we will use the symbol ”∃” as a shorthand meaning ”there exists.” It
is called an existential quantifier. Using this, the claim from the first paragraph can be
expressed ¬∃x ∈ R, x2 < 0.

The connection between these two different forms can intuitively be seen in the fact that
if there does not exist any instance where something is false, then it must in all instances
be true. Vice versa, if something is never true, it must always be false. Formally,

¬∀x ∈ A,P(x)⇔ ∃x ∈ A,¬P(x)

¬∃x ∈ A,P(x)⇔ ∀x ∈ A,¬P(x)

Exercises

Determine whether each of the following is true (proofs aren’t needed), and when ap-
propriate name the property.

1. ∀x ∈ Z,−x ∈ Z.

2. (∀x ∈ Z)(∀y ∈ Z), x + y ∈ Z.

3. (∀x ∈ R)(∃y ∈ Z), x + y = 0.

4. (∀x ∈ Z)(∀y ∈ Z), x · y = 1.

5. (∃x ∈ R)(∀y ∈ R), x · y = 0.

6. (∀x ∈N)(∃y ∈N), x + y = 0.

7. (∀x ∈ R)(∃y ∈ R), x · y = 1.

8. (∀x ∈ Z)(∃y ∈ Z), x − y = 0.

9. (∃x ∈ Z)(∀y ∈ Z), x − y = 0.
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1.9 Proof Techniques: Contradiction

By now you should have quite a bit of practical experience providing convincing argu-
ments for why things are true, or demonstrating clearly when they are not. However, this
and the next few sections will attempt to make you more consciously aware of what is
involved in demonstrating certain sorts of statements. As the difficulty of the material you
work with grows, a greater recognition of the fundamentals will be increasingly valuable.

The essence of a proof by contradiction is supposing the negation of the statement you
wish to prove, and showing that the supposition leads to some impossible conclusion.
Classically such an approach was called reductio ad absurdum, literally reduction to the
absurd. Some instances are very simple, and others much more complex, but it is essential
to have it very clearly in your mind as you proceed that the goal is to reach a contradiction.

Proposition 1: There is no greatest natural number.

Proof: Well, suppose that there were a greatest natural number, and call it n. But then
by the closure of the natural numbers under addition, we know n + 1 is also a natural
number. And since 0 < 1, and adding n to both sides tells us n < n + 1, we see that n is
not in fact the greatest natural number, contradicting our supposition and leaving us to
conclude that there is no greatest natural number. �

Proposition 2:
√

2 is irrational.

Proof: Well, suppose it were rational, so that there were integers p and q such that
p
q =
√

2, and if necessary reduce the fraction so that p and q have no common factors. Then

squaring both sides gives p2

q2 = 2, and multiplying by q2 gives p2 = 2q2. We recognize that
the right-hand side of this equation is even, so by a previous result since p is an integer
for which p2 is even, we know p must itself be even. Then there is an integer r for which
p = 2r, and substituting in our previous equation we have (2r)2 = 2q2, or 4r2 = 2q2, or
2r2 = q2. But this means q2 and hence q must also be even, contradicting our supposition
that we could write

√
2 as a rational number. �

Exercises
1. There is no positive real number which is closest to 0.

2. If x is irrational, then 2x is irrational.

3.
√

3 is irrational.

4. Use a proof by contradiction to show that an integer n cannot be both even and odd.

5. There are infinitely many prime numbers.
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6. If x is rational and y is irrational, then x + y is irrational.

7. The sum of two irrational numbers is irrational.

8. The square root of an irrational number is irrational.

9. There are no integers x and y for which x2 = 3y + 5.

10. If a, b, and c are integers for which a2 + b2 = c2, then at least one of a or b must be
even.
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1.10 Proof Techniques: Induction

There is one particularly unusual approach to demonstrating the truth of statements. In
general settings, the term ”inductive reasoning” refers to a process of drawing general
conclusions from specific instances — for example, deciding that a traffic light stays green
for 30 seconds because you’ve observed it to do so many times, or deciding that gravity
obeys an inverse-square relationship because numerous observations have been made
that agree with such a rule. The drawback to this sort of approach is that we seldom know
patterns will continue (the timing on the traffic light might sometime be adjusted) and
observations are seldom precise beyond all doubt (hence the transition from Newtonian to
Einsteinian physics). Mathematicians desire a level of certainty that goes beyond frequent
observation.

The Principle of Mathematical Induction is our answer to all of this. It is based on a
very careful form of reasoning and the Well-Ordering Principle, which by itself probably
appears rather obvious but less than useful:

Well-Ordering Principle: Any non-empty subset of the natural numbers has a least el-
ement.

Based on this, we state the Principle itself:

Principle of Mathematical Induction: Suppose that some proposition P(n) holds true
when n = 0, and also that whenever P(k) is true, P(k + 1) is also true. Then P must be true
for all n ∈N.

Proof: Well, suppose that we have satisfied the hypotheses of the statement, but that
there are some values of n ∈ N for which the conclusion does not hold. Then by the
Well-Ordering Principle, there must be a smallest natural number for which the statement
fails to be true — let’s call that element m. But then m − 1 is a smaller natural number, so
it must be one for which P(m − 1) is true. That means, taking k = m − 1 in the inductive
hypothesis, we must also know that P(k + 1) is true — but k + 1 would be (m − 1) + 1 = m,
so P(m) must be true. This contradicts our supposition that there were natural numbers
for which the statement failed to hold, so we conclude that the statement holds true for
all natural numbers. �

In practical terms, it’s probably best to get used to the idea of mathematical induction
through examples and practice — fully understanding why it’s working will sink in with
a little time. The rough idea of ”If you can get onto the first rung of a ladder, and if being
able to get to some rung of a ladder guarantees you can make it to the next rung on the
ladder, then there’s no rung you can’t get to eventually” is a good guide for most people
as they get used to this. We’ll begin with an example where we could draw the conclusion
by other means, just as a warm-up.
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Proposition 1: The product of any two consecutive natural numbers is even.

Proof: Well, lets proceed by induction to prove that the statement ”n times n + 1 is
even” holds for all natural numbers n. Suppose that the first integer is 1, so the second is
2. Then 1 × 2 = 2 = 2(1) is even since it’s 2 times an integer.

Now s’pose the statement is true for k, so that k(k + 1) = 2m for some integer m, and
we need to show that k + 1 times k + 2 is even. But

(k + 1)(k + 2) = k2 + 3k + 2
= (k2 + k) + (2k + 2)
= 2m + 2(k + 1) [by our inductive hypothesis]
= 2(m + k + 1).

So since m + k + 1 is an integer, we see that (k + 1)(k + 2) is even. Then since the statement
has been shown true for n = 1, and since whenever the statement is true for n it is also
true for n + 1, we can conclude by mathematical induction that the statement holds true
for all natural numbers n. �

It’s perfectly acceptable to abbreviate the entire passage in gray above as ”So by in-
duction the statement holds for all natural numbers n. �”

For our next example we’ll need a definition:

Definition: If C is a set of real numbers, we say b is an upper bound for C iff (∀x ∈ C), b ≥ x.

Proposition 2: Any collection of exactly n distinct real numbers (where n is a natural
number) has an upper bound.

Proof: Well, let’s proceed by induction. Let C be a collection with just one real num-
ber in it, and call that number x. Then x itself is an upper bound for C, since (∀y ∈ C), x ≥ y.

Now s’pose C is a collection with exactly two distinct real numbers in it, and call them x
and y. Then either x ≥ y or y ≥ x. In the first case x will be an upper bound for C, since
x ≥ x and x ≥ y, and similarly in the second case y is an upper bound for C.

Finally, suppose that any collection with exactly k distinct real numbers in it has an
upper bound, and let D be a collection with exactly k + 1 real numbers. Let’s first create a
new collection C by taking all of the elements of D except one (label as a that element of
D which was omitted from C). Then we know by our inductive hypothesis that C has an
upper bound, call it b. Then either a ≥ b or b ≥ a. Thus by the transitive property in the
first case a is an upper bound for D, and in the second case b is. So by induction, we’ve
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shown that any collection of exactly n distinct real numbers has an upper bound. �

It should be noted that there are a couple of standard variations on the induction we’ve
described here. The simplest possibility is to use a base case other than n = 0; in fact any
starting value for n can work to prove that a proposition holds for values of n from that
value up. The proof of Proposition 2 started at n = 1, although it could have considered
n = 0 — more on that will come later. Another alternative is sometimes described as
”strong induction” and involves an inductive step assuming truth of the statement for
natural number values of n up through k, rather than just for k itself, as in the following
example.

Definition: A natural number n > 1 is prime iff it is divisible by no positive natural
number other than 1 and itself.

Proposition 3 (part of The Fundamental Theorem of Arithmetic): Every natural n > 1
is prime or a product of primes.

Proof: Well, we’ll proceed by induction, starting with n = 2, which satisfies the state-
ment since it is prime. We then take as our inductive hypothesis ”All natural numbers less
than or equal to k satisfy the statement that every natural n > 1 is prime or a product of
primes.” Our job is to show that the truth of this statement for some k assures its truth for
k + 1. There are two possibilities; either k + 1 is itself prime (in which case our statement
is true) or it is not, in which case it is divisible by some other a ∈ N, and we can write
k + 1 = a · b for some b ∈N. But then a and b must both be less than k + 1, so our inductive
hypothesis assures they both are either prime or a product of primes, and that gives us
our desired expression of k + 1 as a product of primes. �

Exercises

1. Use induction to show that for any n ∈N,n2 + n is even.

2. For all n ∈N, 2n > n.

3. n2
≤ 2n for all n ∈N,n ≥ 4.

4. For all n ∈N,n! ≥ 2n−1.

5. The product of n odd integers is odd for any n ≥ 1.

6. Suppose x > −1. Then (1 + x)n
≥ 1 + nx for n ∈N.

7. For all n ∈N, 5 divides n5
− n.

8. Any natural number is either even or odd.
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9. For any n ∈N, with n ≥ 1,

n∑
i=1

c = nc

10. For any n ∈N, with n ≥ 1,
n∑

i=1

i =
n(n + 1)

2

11. For any n ∈N, with n ≥ 1,
n∑

i=1

(2i − 1) = n2

12. For any n ∈N, with n ≥ 1,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

13. For any n ∈N, with n ≥ 1,
n−1∑
i=1

a · ri =
a(1 − rn)

1 − r

for r , 1.

14. Conjecture a formula for
n∑

i=1

1
i(i + 1)

and verify it by induction.
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1.11 Proof Techniques: Cases

Another approach to proving certain sorts of statements is an argument by cases. This
approach is reasonably commonsense most of the time, but deserves some emphasis be-
cause it can be useful when you might not expect it. A few examples should suffice.

Proposition 1: ∀n ∈N,n2 + n is even.

Proof: Well, let’s consider two cases. First, n might itself be even. Then we have previously
shown that the square of an even number is even, and that the sum of two even numbers
is even, so n2 + n must be even. Next consider the other case, where n itself is odd. We
know from previous results that the square of an odd number is odd, and that the sum of
two odd numbers is even, so again n2 + n is even. We also know from an exercise in the
previous section that these are the only possible cases, so we conclude that for all natural
numbers n, n2 + n must be even. �

It is important to note that the last sentence is saying something significant. Just dealing
with a few of the possible cases, or just showing that the conclusion holds in one case, does
not suffice any more than a single example proves a general proposition. Being conscious
of this can help avoid some pitfalls.

Proposition 2: ∀x ∈ R, |x| ≥ 0.

Proof: Well, every real number is either positive, negative, or zero. The absolute value of
0 is 0, and 0 ≥ 0. If x were itself positive, then the absolute value of x is just the same, so
we still have |x| ≥ 0. Finally, if x itself were negative, then its absolute value is positive, so
we still have |x| ≥ 0. So in all possible cases the result holds, as desired. �

Exercises

1. ∀n ∈N,n2
≡3 0 or n2

≡3 1.

2. ∀n ∈N,n2
≡5 0 or n2

≡5 1.

3. ∀x ∈ R, x2
≥ 0.

4. ∀x ∈ R, f (x) =

x − 1 for x ≥ 2
3 − x for x < 2

is non-negative.

5. ∀x ∈ R, g(x) =


x2 for x > 0
0 for x = 0
−x3 for x < 0

is continuous.
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6. ∀x ∈ R, h(x) =

x2 for x ≥ 0
0 for x < 0

is differentiable.
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1.12 Additional Exercises

Here are some additional results that draw on various parts of this chapter.

Exercises

1. If n + 1 items are distributed so that each goes into exactly one of n sets, then at least
one of the sets must contain more than 1 item. [Pigeonhole Principle]

2. The sum of two rational numbers is rational.

3. The sum of two irrational numbers is irrational.

4. The product of two rational numbers is rational.

5. The product of two irrational numbers is irrational.

6. An irrational to an irrational power can be rational

7. Between any two integers there is another integer.

8. Between any two rational numbers there is another rational number.

9. Between any two irrational numbers there is an irrational number.

10. Every even integer greater than 2 can be written as a sum of two prime numbers.
[Goldbach]

11. For any integer n, the number n2 + n + 17 is prime.

12. For any prime number n, 2n
− 1 is prime.
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