Topology – Midterm Exam – Spring 2012

- 1. Let (X, \mathcal{F}) be a topological space. Let $A, B \subseteq X$.
 - a. Prove that $(A \cap B)' \subseteq A' \cap B'$.
 - b. Give an example of a topological space and sets A, B such that $A' \cap B' \subseteq (A \cap B)'$ is false.
- 2. Let $A = [0,1) \cup (2,3]$ be a subset of $(\mathbb{R}, \mathcal{H})$. Find each of the following:
 - a. Cl (A)
 - b. Int (A)
 - c. Bd (A)
 - d. Ext (A)
- 3. Let $\mathscr B$ be a base for a topological space $(X,\mathscr F)$ and let $A\subseteq X$. Show that the collection $\{B\cap A:B\in\mathscr B\}$ is a base for some topology on A.
- 4. Let $f: X \to Y$ be a function and let $U \subseteq X$ and $V \subseteq Y$. Prove:
 - a. $f(f^{-1}(V)) \subseteq V$
 - b. $U \subseteq f^{-1}(f(U))$
- 5. Let $f: X \to Y$ be a function and let A and B be subsets of X. Prove that if f is one to one, then $f(A \cap B) = f(A) \cap f(B)$.
- 6. Let A be a subset of the space (X, \mathcal{F}) . The set A is \mathcal{F} open iff $\mathcal{F}_A \subseteq \mathcal{F}$.
- 7. Let (X, \mathcal{F}) be a topological space and let $A \subseteq X$. The set A is said to be *dense* in X provided that Cl(A) = X.

Let D be dense in X and let U be an open subset of X.

- a) Prove that $U \cap D \neq \emptyset$
- b) Prove that if U is dense in X, then $U \cap D$ is dense in X.

- 8. Establish each of the following as true or false. If true, explain briefly why it is true. If false, give a counterexample.
 - a. If $f: X \to Y$ is an **onto** function and V is a non-empty subset of Y, then $f^{-1}(V)$ is a non-empty subset of X.
 - b. Any one-to-one, onto function between two discrete topological spaces is a homeomorphism.
 - c. If A is a subset of a topological space, then $A \subseteq A'$.
 - d. If A is a closed set in a topological space, then Bd $A \subseteq A$.
 - e. There exists a topological space (X, \mathcal{F}) such that there is no base for \mathcal{F} .
 - f. Every constant function is continuous regardless of the topologies on the domain and codomain.
 - g. If *X* and *Y* are homeomorphic topological spaces, then any one-to-one function from *X* onto *Y* is a homeomorphism.
 - h. If $f: X \to Y$ is a continuous function, then $f^{-1}(Y) = X$.
 - i. If a function $f: \mathbb{R} \to \mathbb{R}$ is $\mathscr{U} \mathscr{H}$ continuous function then f is $\mathscr{U} \mathscr{U}$ continuous.
 - j. If $f: X \to Y$ is an open function and V is a open subset of Y, then $f^{-1}(V)$ is an open subset of X.
- 9. Let $f:(X,\mathcal{F})\to (Y,\mathcal{F})$. f is said to be a *closed* function if for each $\mathcal{F}-closed$ subset U of X, f(U) is an $\mathcal{F}-closed$ subset of Y. Prove that $f:(X,\mathcal{F})\to (Y,\mathcal{F})$ is a homeomorphism if and only if f is one-to-one, onto, continuous and *closed*.
- 10. Let $f:(X,\mathcal{F})\to (Y,\mathcal{F})$. Prove: f is open if and only if $f[Int(A)]\subseteq Int(f[A])$ for all $A\subseteq X$.