Examlet 4Foundations of Advanced Math4/19/19

- 1. Consider the relation ~ on \mathbb{Z} defined by $a \sim b \Leftrightarrow a b$ is odd.
 - (a) Determine whether and why \sim is reflexive.

(b) Determine whether and why \sim is symmetric.

(c) Determine whether and why \sim is transitive.

- 2. Consider the relation on some collection of sets defined by $A \approx B \Leftrightarrow \exists$ a bijection $f : A \rightarrow B$.
 - (a) Determine whether and why \approx is reflexive.

(b) Determine whether and why \approx is symmetric.

(c) Determine whether and why \approx is transitive.

- 3. Let $S = \{a, b, c, d\}$, and let $\sim = \{(a, a), (b, b), (b, c), (c, b), (c, c), (d, d)\}$.
 - (a) Give the equivalence classes of \sim .

(b) Give the partition associated with \sim .

- 4. Suppose that *G* is a graph with at least one cycle. We say that two vertices v_1 and v_2 of a graph *G* are **on a common cycle of** $G \Leftrightarrow \exists$ a cycle including v_1 and v_2 .
 - (a) The relation of being on a common cycle of a graph is reflexive.

(b) The relation of being on a common cycle of a graph is symmetric.

(c) The relation of being on a common cycle of a graph is transitive.

5. (a) Give all trees with $n \le 5$ vertices.

(b) The minimum number of vertices with degree 1 in a tree with n vertices is