1. Consider the relation \sim on \mathbb{Z} defined by $a \sim b \Leftrightarrow a-b$ is odd.
(a) Determine whether and why \sim is reflexive.
(b) Determine whether and why ~is symmetric.
(c) Determine whether and why ~ is transitive.
2. Consider the relation on some collection of sets defined by $A \approx B \Leftrightarrow \exists$ a bijection $f: A \rightarrow B$.
(a) Determine whether and why \approx is reflexive.
(b) Determine whether and why \approx is symmetric.
(c) Determine whether and why \approx is transitive.
3. Let $S=\{a, b, c, d\}$, and let $\sim=\{(a, a),(b, b),(b, c),(c, b),(c, c),(d, d)\}$.
(a) Give the equivalence classes of \sim.
(b) Give the partition associated with ~.
4. Suppose that G is a graph with at least one cycle. We say that two vertices v_{1} and v_{2} of a graph G are on a common cycle of $G \Leftrightarrow \exists$ a cycle including v_{1} and v_{2}.
(a) The relation of being on a common cycle of a graph is reflexive.
(b) The relation of being on a common cycle of a graph is symmetric.
(c) The relation of being on a common cycle of a graph is transitive.
5. (a) Give all trees with $n \leq 5$ vertices.
(b) The minimum number of vertices with degree 1 in a tree with n vertices is
