Examlet 3Advanced Geometry4/12/19

1. a) State the Neutral Area Postulate.

b) State the Euclidean Area Postulate.

2. A triangle has $\alpha = 36^{\circ}$, A = 6.0, and C = 10.0. Solve for the remaining measurements, accurate to the nearest tenth.

3. Provide good justifications in the blanks below for the corresponding statements: Proposition: If $\triangle ABC$ and $\triangle DEF$ are two triangles such that $\triangle ABC \sim \triangle DEF$, then

$$\frac{AB}{AC} = \frac{DE}{DF}$$

Statement:	Reason:
If $AB = DE$, then $\triangle ABC \cong \triangle DEF$ and the conclusion	
is evident.	
So suppose $AB \neq DE$. Either $AB > DE$ or $AB < DE$.	
Change notation, if necessary, so that $AB > DE$.	
Choose a point <i>B</i> ' on \overline{AB} such that $AB' = DE$.	
Let <i>m</i> be the line through <i>B</i> ′ such that <i>m</i> is parallel	
to $\ell = \overrightarrow{BC}$	
and let C' be the point at which <i>m</i> intersects \overline{AC} .	
1	
Then $\angle AB'C' \cong \angle DEF$	
Then $\triangle AB'C' \cong \triangle DEF$	
Let <i>n</i> be the line through <i>A</i> that is parallel to ℓ and <i>m</i> .	
Then $AB'/AB = AC'/AC$ and so $DE/AB = DF/AC$.	
$D\Gamma/D\Gamma = AR/AC$ as desired	
DE/DF = AB/AC as desired.	

4. Prove that if $\Box ABCD$ is a parallelogram in the Euclidean plane and diagonal \overline{AC} divides the quadrilateral into congruent triangles, then the opposite sides are congruent.

5. Prove that for a Saccheri quadrilateral in the hyperbolic plane, the length of the summit must be greater than the length of the base.