You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit. Four of these problems will be selected (by Jon) for grading, with each worth 5 points.

1. [Baker 2.1.7] For $i=1,2, \ldots, n$ let $I_{n}=\left(a_{i}, b_{i}\right)$ be an open interval. Show that $\bigcap\left\{I_{i}: i=1,2, \ldots, n\right\}$ is either the empty set or an open interval.
2. [Baker 2.1.8] Use Definition 2.1.6 to show that $f(x)=\left\{\begin{aligned}-3 & \text { if } x<1 \\ 3 & \text { if } x \geq 1\end{aligned}\right.$ is not a continuous function.
3. [Baker 2.1.9] Use Definition 2.1.6 to show that $f(x)=\left\{\begin{array}{cl}1 / x & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is not a continuous function.
4. [Baker 2.1.10] Complete the proof of Theorem 2.1.8.
5. [Baker 2.2.10] Show that the collection \mathscr{C} given in Example 2.2.3 is a topology for \mathbb{R}.
6. [Baker 2.2.12] Determine if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\left\{\begin{aligned}
2 & \text { if } x>1 \\
-2 & \text { if } x \leq 1
\end{aligned}\right.
$$

is
(a) $\mathscr{U}-\mathscr{U}$ continuous
(b) $\mathscr{U}-\mathscr{H}$ continuous
(c) $\mathscr{U}-\mathscr{C}$ continuous
(d) $\mathscr{H}-\mathscr{U}$ continuous
(e) $\mathscr{H}-\mathscr{H}$ continuous
(f) $\mathscr{C}-\mathscr{H}$ continuous
(g) $\mathscr{C}-\mathscr{C}$ continuous
7. [Baker 2.3.14] Let A and B be subsets of a topolpogical space (X, \mathscr{T}). Show that $(X-\mathrm{Cl}(A)) \cup(X-\mathrm{Cl}(B)) \subseteq X-\mathrm{Cl}(A \cap B)$. Find an example that shows these sets are not in general equal.
8. [Baker 2.3.15] Let A and B be subsets of a topological space (X, \mathscr{T}). Show that

$$
X-\mathrm{Cl}(A \cup B)=(X-\mathrm{Cl}(A)) \cap(X-\mathrm{Cl}(B)) .
$$

