Problem Set 4Set Theory & TopologyDue 2/24/20

You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit. Five of these problems will be selected (by Jon) for grading, with each worth 4 points.

- 1. [Baker Th 3.1.7] Let (X, \mathscr{T}) be a topological space with $A \subseteq X$ and $U \subseteq A$. The set U is \mathscr{T}_A -closed iff $U = W \cap A$ for some \mathscr{T} -closed set W.
- 2. [Baker Th 3.1.14] Let *A* be a subset of the space (X, \mathcal{T}) . The set *A* is \mathcal{T} -open iff $\mathcal{T}_A \subseteq \mathcal{T}$.
- 3. [Baker Th 3.1.13] If \mathscr{B} is a base for a topological space (X, \mathscr{T}) and $A \subseteq X$, then the collection $\{B \cap A : B \in \mathscr{B}\}$ is a base for (A, \mathscr{T}_A) .
- 4. [Baker Th 3.2.14] Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces and let $A \subseteq X$. If $f: (X, \mathscr{T}) \to (Y, \mathscr{S})$ is continuous, then $f|_A : (A, \mathscr{T}_A) \to (Y, \mathscr{S})$ is continuous.
- 5. [Baker 3.3.9] Let (a, b) and (c, d) be open intervals. Prove that the spaces $((a, b), \mathscr{U}_{(a,b)})$ and $((c, d), \mathscr{U}_{(c,d)})$ are homeomorphic.
- 6. Partition the spaces 1 2 3 4 5 6 7 8 9 0 into mutually disjoint collections of hemeomorphic spaces such that, if two spaces belong to different collections, then they are not homeomorphic.
- 7. Partition the spaces a b c d e f g h i j k l m n o p q r s t u v w x y z into mutually disjoint collections of hemeomorphic spaces such that, if two spaces belong to different collections, then they are not homeomorphic.
- 8. [Baker Th 4.1.10] Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces. If *A* and *B* are closed subsets of *X* and *Y*, respectively, then $A \times B$ is a closed subset of $X \times Y$.