1. Let $A=\{1,2\}$ and $B=\{2,3\}$. Express each as simply as possible:
(a) $A \cup B$
(b) $A \cap B$
(c) $A-B$
(d) $\mathcal{P}(A)$
(e) $A \times B$
2. Biff says that each of the unions below is equal to \mathbb{R}. For each, either briefly support or refute his assertion.
(a) $\bigcup_{a \in \mathbb{Z}}(a, a+1)$
(b) $\bigcup_{a \in \mathbb{Z}}[a, a+1)$
(c) $\bigcup_{a \in \mathbb{Z}}\{a, a+1\}$
(d) $\bigcup_{a \in \mathbb{R}}\{a, a+1\}$
(e) $\bigcup_{a \in \mathbb{Z}}(a, a+3)$
3.

$$
A \cup \bigcap_{i \in I} B_{i}=\bigcap_{i \in I}\left(A \cup B_{i}\right)
$$

4. Show that if $a, b, c \in \mathbb{R}$ with $a<b$ and $c<0$, then $a c>b c$. Give explicit justifications for each of your steps.
5. $\forall x, y, z \in \mathbb{R},|x+y+z| \leq|x|+|y|+|z|$.
