- 1. Let $A = \{1, 2\}$ and $B = \{2, 3\}$. Express each as simply as possible:
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) A B
 - (d) $\mathcal{P}(A)$
 - (e) $A \times B$

2. Biff says that each of the unions below is equal to \mathbb{R} . For each, either briefly support or refute his assertion.

(a)
$$\bigcup_{a\in\mathbb{Z}}(a,a+1)$$

(b)
$$\bigcup_{a\in\mathbb{Z}}[a,a+1)$$

(c)
$$\bigcup_{a\in\mathbb{Z}}\{a,a+1\}$$

(d)
$$\bigcup_{a\in\mathbb{R}}\{a,a+1\}$$

(e)
$$\bigcup_{a\in\mathbb{Z}}(a,a+3)$$

$$A \cup \bigcap_{i \in I} B_i = \bigcap_{i \in I} (A \cup B_i)$$

4. Show that if a for each of yo	$a,b,c \in \mathbb{R}$ with $a < b$ our steps.	and $c < 0$, then ac	> <i>bc</i> . Give explic	it justifications

5. $\forall x, y, z \in \mathbb{R}, |x + y + z| \le |x| + |y| + |z|.$