1. Consider the relation \sim on \mathbb{Z} defined by $x \sim y \Leftrightarrow|x-y|>3$.
(a) Find 3 elements of \mathbb{Z} that are related to 2 .
(b) Find 3 elements of \mathbb{Z} that are not related to 2 .
(c) Determine whether \sim is an equivalence relation.
2. Let $S=\{a, b, c, d, e\}$, and let $\sim=\{(a, a),(b, b),(b, d),(b, e),(c, c),(d, b),(d, d),(d, e),(e, b),(e, d),(e, e)\}$
(a) Give the equivalence classes of \sim.
(b) Give the partition associated with \sim.
3. Let S be a set and Π a partition of S. Let \sim be a relation on S defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
(a) Show \sim is a reflexive relation.
(b) Show \sim is a symmetric relation.
(c) Show \sim is a transitive relation.
4. Let S be a set and define a relation on the subsets of S by saying $T \sim U$ iff there exists a bijection from T to U.
(a) Determine whether \sim is a reflexive relation, and why.
(b) Determine whether \sim is a symmetric relation, and why.
(c) Determine whether ~ is a transitive relation, and why.
5. In any graph, the number of vertices of odd degree is even.
